信号转导子和转录激活因子3(signal transducer and activator of transcription3,STAT3)在多种癌干细胞中存在异常表达,其与细胞的癌变具有强相关性。因此,设计和研究新的STAT3抑制剂是攻克癌症的重要且有效策略。本文基于循环神经网络(recurrent neural network,RNN)算法,提出一种全新STAT3抑制剂的设计方法,并且通过分子模拟研究对该方法进行效果评价。本文的研究路线如下:使用RNN算法构建STAT3抑制剂生成模型,使其能生成全新抑制剂;基于机器学习算法,建立STAT3抑制剂的分子分类预测模型;对分类为STAT3抑制剂的分子进行基于分子对接的层级虚拟筛选,选出最终在高精度筛选(extra precision,XP)中得分最高的3个分子作为潜在抑制剂进行下一步研究;对潜在抑制剂进行结合自由能计算以及吸收、分配、代谢、排泄和毒性(absorption distribution metabolism excretion toxicity,ADMET)的预测并在后续利用独立梯度模型(independent gradient model,IGM)分析,进一步探究其成药性。本文的研究结果表明,利用上述方法可以有效生成出有良好成药性的全新STAT3潜在抑制剂,为后续STAT3药物研发提供经验和参考。