阅读排行

  • 一年内发表的文章
  • 两年内
  • 三年内
  • 全部
Please wait a minute...
  • 全选
    |
  • 中国生物化学与分子生物学报. 2025, 41(2): 218-218.
  • 封面图片
    封面图片设计 曹腾辉
    中国生物化学与分子生物学报. 2025, 41(2): 333.
  • 中国生物化学与分子生物学报. 2025, 41(2): 209-209.
  • 中国生物化学与分子生物学报. 2025, 41(2): 330-331.
  • 目录
    中国生物化学与分子生物学报. 2025, 41(2): 0-0.
  • 中国生物化学与分子生物学报. 2025, 41(2): 332-332.
  • 中国生物化学与分子生物学报. 2025, 41(2): 283-283.
  • 封三图片
    中国生物化学与分子生物学报. 2025, 41(2): 334.
  • 封底图片
    中国生物化学与分子生物学报. 2025, 41(2): 335.
  • 目录
    中国生物化学与分子生物学报. 2025, 41(3): 0-0.
  • 中国生物化学与分子生物学报. 2025, 41(3): 375-375.
  • 封面图片
    封面图片设计 王瑞淇, 王子梅
    中国生物化学与分子生物学报. 2025, 41(3): 378-378.
  • 封二图片
    中国生物化学与分子生物学报. 2025, 41(3): 379-379.
  • 述评
    卜友泉, 曹永福, 昌增益, 陈宏宇, 陈晓巍, 陈园园, 陈柱成, 邓蕊, 丁洁, 范仲凯, 高国全, 高旭, 胡兰, 胡晓青, 贾弘禔, 孔英, 李恩民, 李凌, 李玉华, 刘俊荣, 刘志强, 罗亚平, 吕雪梅, 裴雁曦, 彭小忠, 汤其群, 万有, 汪勇, 王明旭, 王宪, 谢广宽, 解军, 严晓华, 尹梅, 于忠山, 周春燕, 朱瑞芳, 《解剖学报》编辑部, 《生命的化学》编辑部
    中国生物化学与分子生物学报. 2025, 41(6): 826-832. https://doi.org/10.13865/j.cnki.cjbmb.2025.06.1272
    摘要 (2157) PDF全文 (366)   可视化   收藏
    随着生成式人工智能技术的迅猛发展,其在学术研究与论文写作中得到广泛应用,在不断拓展科研边界的同时,也引发了著作权归属、内容真实性、引用失准、责任认定等一系列伦理与规范挑战。面对人工智能深度参与学术内容生成的趋势,构建公开、透明、可控、可信的伦理治理体系,已成为保障科研诚信和维护学术共同体信任的关键课题。本专家共识围绕人工智能辅助学术论文写作的核心环节,从研究选题、数据管理、文献引用、成果署名等方面,系统提出了伦理要求。旨在明确人工智能在学术论文写作中的适用边界与伦理准则,确保科技工具在提升效率的同时坚守诚信底线,为构建负责任、可持续的科研生态提供治理参考和制度支撑。
  • 封底图片
    中国生物化学与分子生物学报. 2025, 41(3): 380-380.
    摘要 (2149) PDF全文 (1001)   可视化   收藏
  • 中国生物化学与分子生物学报. 2025, 41(3): 481-481.
  • 中国生物化学与分子生物学报. 2025, 41(3): 485-485.
  • 目录
    中国生物化学与分子生物学报. 2025, 41(4): 0-0.
  • 综述
    刘梦丹, 莫海珍, 姚丽姗
    中国生物化学与分子生物学报. 2025, 41(9): 1268-1279. https://doi.org/10.13865/j.cnki.cjbmb.2025.06.1046
    铁死亡(ferroptosis)是一种由铁依赖的脂质过氧化驱动的新型程序性细胞死亡方式,其多层面的调控机制(主要涉及铁代谢、脂质过氧化及抗氧化系统)在疾病治疗和微生物防控领域均发挥关键作用。尤其在疾病治疗领域,铁死亡因其在自身免疫性疾病、癌症及心血管等疾病中发挥关键作用,被视为极具潜力的治疗靶标。本综述系统梳理了铁死亡的核心调控因子(例如过氧化物酶4(GPX4)、长链酰基辅酶A合成酶4(ACSL4))及其相互作用网络,深入探讨了基于铁死亡信号通路的靶向干预策略在疾病治疗及微生物防控中的应用前景。此外,文章还总结了当前铁死亡在实际应用中面临的问题,并提出通过纳米递送、提高药物化学稳定性及水溶性等策略优化疗效,为探索更多利用铁死亡进行靶向治疗提供理论基础和实用性指南。
  • 庆祝创刊40周年
    孙梦泽, 李鹏翠, 胡晓青
    中国生物化学与分子生物学报. 2025, 41(2): 178-189. https://doi.org/10.13865/j.cnki.cjbmb.2024.12.1287
    信使mRNA(messenger RNA, mRNA)疗法是通过将效应分子以mRNA的形式递送至细胞内以治疗疾病的方法。mRNA各个部分序列高度可变的特点为高通量药物开发以及个性化治疗提供了潜在解决方案。本文从mRNA发展历程切入,概述了mRNA的发现发展及其递送方法的演进过程。并针对mRNA所递送蛋白质的不同,分类别介绍mRNA在蛋白质替代疗法、癌症治疗、在体基因编辑和传染病预防中的应用。为将mRNA制剂应用于临床,需针对mRNA及其递送载体进行优化十分关键。本文进一步介绍如何通过核苷修饰和序列优化等方法提高mRNA的翻译效率以及稳定性,并系统比较新型环状mRNA与传统线性mRNA在疫苗开发方面的优劣。同时,针对mRNA的不同递送系统,本文总结脂质纳米颗粒等常用的递送手段,并详细阐述各个方法在靶向递送方面的最新进展。针对目前上市和在研的mRNA药物,本文系统总结其治疗的疾病、递送的效应分子以及所处的临床阶段。最后,本文展望了目前mRNA疗法所面临的问题以及能够潜在治疗的疾病,以期为mRNA疗法开发提供理论基础和参考依据。
  • 中国生物化学与分子生物学报. 2025, 41(4): 493-493.
  • 综述
    张子悦, 周欣智, 吕斌
    中国生物化学与分子生物学报. 2025, 41(4): 522-532. https://doi.org/10.13865/j.cnki.cjbmb.2025.02.1321
    基因编辑技术在目标基因定位与切割方面具有高效性和精确性,已成为生物医学研究的重要工具。该技术不仅促进了对基因功能的基础研究,还为遗传性疾病的基因治疗和作物遗传改良提供了新的策略。随着人工智能技术的融入,特别是机器学习算法的应用,基因编辑的设计与执行变得更加智能化。AI技术通过预测分析和模式识别,优化了sgRNA的设计,提高了编辑的特异性和效率,同时降低了非目标效应的风险。此外,AI在大规模基因组数据的解析中也发挥着关键作用,为理解复杂的生物学过程和疾病机制提供了新的视角。本文 综述了数据驱动的基因编辑技术在靶点精准化、安全性提升和个性化治疗方面的研究进展,旨在为基因编辑技术领域的研究者提供参考和启发,推动人工智能在基因编辑技术中的应用和发展。
  • 综述
    李欣, 胡莹, 王玉明
    中国生物化学与分子生物学报. 2025, 41(3): 364-375. https://doi.org/10.13865/j.cnki.cjbmb.2025.01.1194
    CRISPR/Cas系统的出现极大推动了基因编辑领域的进步,特别是CRISPR/Cas9系统,已成为生物医学研究的核心工具。长非编码RNA(lncRNA)在基因调控、细胞分化和多种疾病的发展过程中发挥关键作用,尤其在癌症研究中,lncRNA作为癌症生物标志物和治疗靶点,具有重要的应用前景。然而,由于lncRNA普遍具有低丰度和保守性差等特点,限制了传统手段对其功能的研究。CRISPR/Cas9技术为lncRNA的研究提供了一个高效、灵活且精确的工具,显著加速了该领域的进展。本文首先回顾了CRISPR/Cas9系统的基本原理及其在基因编辑中的广泛应用,包括CRISPR敲除、敲入、干扰和激活等多种功能系统。这些技术不仅可以筛选特定生物过程中的关键lncRNA,还能够用于基因功能研究,探索其在疾病中的作用。本文重点分析了CRISPR/Cas9技术在研究lncRNA功能和调控机制,以及其在肿瘤研究中的关键应用。此外,文章还总结了通过CRISPR/Cas9进行全基因组筛选以识别功能性lncRNA的方法,并探讨了这些lncRNA在癌症细胞增殖、迁移、侵袭以及耐药性中的作用。CRISPR/Cas9敲除系统可以高效敲除lncRNA基因,揭示其在基因调控中的具体功能。同时,CRISPR激活和干扰技术为非编码基因的研究提供了新的思路,通过调控lncRNA的表达水平,进一步探索其在癌症等疾病中的临床应用。文章还探讨了CRISPR技术在未来lncRNA研究中的潜力,尤其是在解决基因组复杂性、靶向效率和脱靶效应等技术难题方面的进展。综上所述,CRISPR/Cas9技术不仅为研究lncRNA提供了强有力的工具,也为未来开发新的癌症诊断和治疗手段提供了新的思路和机会。
  • 中国生物化学与分子生物学报. 2025, 41(4): 521-521.
  • 综述
    张了, 罗再, 黄陈
    中国生物化学与分子生物学报. 2025, 41(3): 353-363. https://doi.org/10.13865/j.cnki.cjbmb.2024.11.1298
    铁死亡是一种以依赖铁的脂质过氧化为核心的新型程序性细胞死亡形式。多种代谢物可参与铁死亡的调控,其中脂质代谢发挥着重要作用。含多不饱和脂肪酸的磷脂(phospholipids containing polyunsaturated fatty acyl chain, PUFA-PLs)在生物膜上发生超阈值的过氧化,导致膜结构和功能的破坏是最为经典的脂质代谢介导的铁死亡机制。此外,含多不饱和脂肪酸(polyunsaturated fatty acid, PUFA)的特殊脂质,例如具有二酰基-PUFA尾的磷脂(phospholipid with diacyl-PUFA tails, PL-PUFA2)、多不饱和醚磷酯(polyunsaturated ether phospholipid, PUFA-ePL)、含PUFA的胆固醇酯(cholesterol ester containing polyunsaturated fatty acyl chain, PUFA-CE)也被发现,可通过提供PUFA用于过氧化,进而参与铁死亡过程;脂滴通过储存和释放PUFA调节铁死亡的敏感性;胆固醇代谢的中间产物及衍生物主要参与铁死亡的负向调控;不同类别的鞘脂对铁死亡的调控方向并不一致。基于前期大量研究证实,铁死亡与胃肠肿瘤的增殖、转移和耐药的发生等密切相关,我们进一步归纳了胃肠肿瘤细胞中驱动铁死亡抵抗的相关脂质代谢机制,如削弱PUFA-PLs合成代谢及过氧化进程,增强铁死亡防御系统等,以及胆固醇代谢、脂滴代谢、鞘脂类代谢与胃肠肿瘤产生铁死亡抗性的关系。靶向这些特定脂质及代谢酶与途径以调控铁死亡具有重要的临床潜在价值,有望为寻找新的胃肠肿瘤诊断、预后标志物和治疗药物,及逆转化疗耐药提供新思路。
  • 综述
    张慧菲, 姜月华
    中国生物化学与分子生物学报. 2025, 41(5): 678-686. https://doi.org/10.13865/j.cnki.cjbmb.2025.03.1325
    心磷脂(cardiolipin, CL)是一种特殊的聚甘油磷脂,主要在线粒体内膜和嵴中合成,作为线粒体功能的关键组成成分。它在细胞膜、线粒体内膜以及能量代谢过程中扮演着重要角色,特别是在维持氧化磷酸化和电子传递链的稳定性方面。心磷脂的代谢异常与多种心血管疾病的发生密切相关,尤其是在Barth综合征等遗传性疾病中表现尤为突出。此外,心磷脂的过氧化物氧化心磷脂(oxCL)在心血管疾病中的作用日益受到关注。研究表明,心磷脂过氧化不仅会导致线粒体内膜的损伤,还会促进活性氧(reactive oxygen species,ROS)生成,增强细胞的氧化应激反应。心磷脂的代谢异常还与动脉粥样硬化、糖尿病性心肌病、高血压等疾病的发病机制密切相关。通过调节心磷脂代谢和修复其功能缺陷,有望成为治疗这些疾病的潜在策略。本文综述了心磷脂的合成、分解和重塑过程,并探讨了它在心血管疾病中的重要作用。心磷脂的合成依赖于线粒体内部的多种酶,而其重塑则涉及磷脂酰转移酶等关键酶类。心磷脂的异常代谢,尤其是BTHS患者中tafazzin基因突变导致的心磷脂重塑缺陷,会引起线粒体功能障碍、ATP合成减少及氧化应激加剧,最终导致心肌和其他组织的损伤。
  • 庆祝创刊40周年
    王瑞淇, 杨杰良, 王子梅
    中国生物化学与分子生物学报. 2025, 41(3): 333-343. https://doi.org/10.13865/j.cnki.cjbmb.2025.02.1384
    衰老是各种分子和细胞损伤随时间累积的结果,涉及3类共12种特征性标志,包括基因组不稳定性、端粒损耗、表观遗传改变、蛋白质稳态丧失、巨自噬失能等原发性标志;营养感应失调、线粒体功能障碍、细胞衰老等拮抗性标志,干细胞耗竭、细胞间通讯改变、慢性炎症和生态失调等综合性标志。因此,研究单一通路功能的细胞信号因子难以全面理解复杂的衰老机制。酪蛋白激酶Ⅱ(casein kinase 2,CK2)是最早被鉴定的蛋白质激酶之一,可以磷酸化数百种底物的丝/苏/酪氨酸位点,具有高度组成性表达活性,广泛参与细胞增殖、分化、凋亡、应激、代谢和免疫等功能调节,发挥着协同各类信号分子通路交叉整合的独特作用,对维持细胞存活和稳态具有重要意义。近年研究揭示,CK2在衰老过程中呈现表达水平及酶活性扰动现象,不同动物、组织器官及细胞模型存在一定异质性。总体而言,CK2的表达下调可促进衰老的原发性标志发展、但减轻衰老的拮抗性标志并改善衰老的综合标志,呈现双重效应和相互关联的机制特征。值得注意的是,多种衰老相关性疾病均伴随CK2表达及酶活性的异常激活,包括肿瘤、心血管疾病、慢性代谢性疾病、神经系统以及骨骼的退化性疾病等。因此,维持CK2稳态有望成为延缓衰老的有效策略。本文总结了CK2与衰老研究的最新进展,不仅有助于深入理解衰老与衰老相关性疾病的共性机制,而且为开发早期防治衰老相关性疾病的潜在药物靶点提供了理论依据。
  • 中国生物化学与分子生物学报. 2025, 41(4): 606-606.
  • 中国生物化学与分子生物学报. 2025, 41(4): 616-616.
  • 封面图片
    封面图片设计 王文梦, 李当当
    中国生物化学与分子生物学报. 2025, 41(4): 618-618.
  • 综述
    张孜怡, 沈俊男, 庞卫军
    中国生物化学与分子生物学报. 2025, 41(2): 190-200. https://doi.org/10.13865/j.cnki.cjbmb.2024.12.1248
    骨骼肌是机体最大的代谢和内分泌器官,肌纤维作为骨骼肌的基本单位,具有高度可塑性。骨骼肌纤维主要分为氧化型肌纤维和酵解型肌纤维,肌纤维类型是影响骨骼肌收缩和能量代谢的重要因素。了解调控骨骼肌纤维类型转换的分子机制对于调控骨骼肌相关疾病具有深远意义。线粒体是细胞生命活动的能量工厂,线粒体的特性即线粒体含量、形态及分布均与线粒体的功能密切相关。不同肌纤维类型的线粒体特性有所不同,这与不同肌纤维能量代谢方式的差异有关。线粒体稳态是一个动态平衡过程,通常受线粒体生物发生、线粒体融合和裂变以及线粒体自噬等过程调控,它们不仅会影响线粒体形态和数量而且影响着机体的葡萄糖和脂肪酸代谢平衡。许多研究表明,线粒体介导的骨骼肌能量代谢底物的改变影响着骨骼肌纤维类型转换过程。运动是一种非药物治疗手段,一般情况下,可以通过维持骨骼肌线粒体稳态促进氧化型肌纤维生成。本文综述了不同类型骨骼肌纤维中的线粒体特性,以及维持线粒体稳态调控肌纤维类型转化的作用,并在此基础上,总结了线粒体参与介导的PGC1α、Ca2+和ROS重要信号通路调控骨骼肌纤维类型转换的分子机制。线粒体作为骨骼肌的能量工厂,通过了解其调控机制进行针对性干预可能是未来治疗骨骼肌相关疾病的新方向。
  • 综述
    林秋梅, 王冬梅
    中国生物化学与分子生物学报. 2025, 41(2): 219-229. https://doi.org/10.13865/j.cnki.cjbmb.2024.11.1290
    补体系统在识别和消除病原体、清除生理碎片、协调免疫反应以及稳态等方面发挥重要作用,作为炎症反应的一种早期预警信号,异常的补体活动是病理性疼痛发病的重要诱因。补体成分3(complement 3,C3)是病理性疼痛诱发过程中补体系统激活的重要指标。实验及临床流行病学研究发现,多种病理性疼痛中周围与中枢神经C3异常升高,通过结合特异性C3受体直接或间接通过补体信号调控神经元对神经病变的反应。C3可以通过在神经元质膜上表达的特异性补体受体直接调节神经元的生命和死亡的各个方面,也可以通过募集胶质细胞和免疫细胞经各种机制将补体信号传递给神经元间接调节,补体信号指导神经元对组织损伤、神经创伤和神经病变的反应。本文主要对C3在病理性疼痛涉及的细胞因子和信号通路的机制进行综述,探讨C3成为镇痛靶点的可能性。
  • 庆祝创刊40周年
    赖宇欣, 彭子君, 梁静
    中国生物化学与分子生物学报. 2025, 41(2): 169-177. https://doi.org/10.13865/j.cnki.cjbmb.2024.11.1324
    蛋白质酰基化修饰(protein acylation)是一类与代谢关系紧密的新型化学修饰,包括以代谢中间产物酰基辅酶A(acyl-coenzyme A,acyl-CoA)为底物的多种赖氨酸酰基化(lysine acylation)。酰基化与乙酰化的化学结构相似,而在碳链长度、疏水性和电荷等方面存在差异。由于酰基化的原料多为代谢产物的CoA形式,随细胞内代谢状态而不断变化,蛋白质酰基化在一定程度上受到细胞代谢影响。代谢重编程是肿瘤细胞的重要特征。除经典的“瓦伯格效应”外,癌细胞在脂代谢、氨基酸代谢及生物氧化等多个环节均存在异常调控。组蛋白上的酰基化修饰可影响染色质结构,并通过调控基因表达及损伤修复等参与肿瘤发生发展;而非组蛋白酰基化修饰则可参与调控信号转导、酶活性、蛋白质间相互作用等,进而影响癌细胞的增殖、侵袭、免疫逃逸和血管重塑等多种生物学行为。本文以与代谢关系密切的乳酸化、琥珀酰化和巴豆酰化为例,介绍了蛋白质酰基化的产生、原料、调节机制及因子,梳理了癌细胞代谢重编程参与调节上述途径及组蛋白/非组蛋白酰基化水平,影响代谢相关基因表达和蛋白质功能,形成蛋白质酰基化与癌细胞代谢网络的双向对话而加速肿瘤进展。此外,本文对蛋白质酰基化领域可能的研究方向及临床转化前景提出了几点展望。
  • 综述
    张红, 王子辰, 赵自刚
    中国生物化学与分子生物学报. 2025, 41(7): 987-996. https://doi.org/10.13865/j.cnki.cjbmb.2025.03.1470
    线粒体和内质网(endoplasmic reticulum, ER)的结构与功能对维持细胞稳态至关重要,线粒体和ER之间的交互作用参与了多种疾病的发生发展。线粒体相关ER膜(mitochondria-associated endoplasmic reticulum membranes, MAM)是ER和线粒体之间的膜接触位点,是真核细胞细胞器间的重要通信枢纽,ER侧的钙离子通道及线粒体侧的钙离子通道参与了MAM调节钙转运的基本过程,二者的交互作用通过调节钙转运控制线粒体生物学功能和细胞存亡,参与多种病理过程的发生和进展。一方面,靶向MAM调节钙转运参与了肿瘤细胞、神经元、心肌细胞、内皮细胞、髓核细胞等细胞的生存和死亡过程;另一方面,MAM调节钙转运在Hepa 1-6细胞、胰岛β细胞的合成和分泌以及肌萎缩性侧索硬化症线粒体功能障碍的发生与发展。此外,MAM还可通过调节钙转运影响细胞转录过程,进而参与血管生成及乳腺癌的进展。本文综述MAM及其在钙转运调节中的病理生理作用,为靶向MAM防治相关疾病提供新的视野。
  • 综述
    段江凯, 陈亮
    中国生物化学与分子生物学报. 2025, 41(5): 664-677. https://doi.org/10.13865/j.cnki.cjbmb.2024.03.1236
    目前,获得性免疫缺陷综合征(acquired immune deficiency syndrome,AIDS)已成为严重威胁世界人民健康的公共卫生问题,它破坏人体的免疫系统,使人体因丧失对各种疾病的抵抗能力而发病并死亡。根除潜伏存在的人类免疫缺陷病毒(human immunodeficiency virus,HIV),实现功能性治愈,从而限制AIDS的发展,并改善患者的生活质量,是需要迫切解决的问题。表观遗传学主要研究基因序列改变之外的可遗传的基因表达调控。HIV的基因表达调控受到多种表观遗传因素的影响,并涉及到多种机制。了解HIV感染过程中相关的表观遗传机制,对于清除潜伏的病毒和在未来实现对AIDS的控制与治疗至关重要。因此,我们将对HIV感染过程中的相关表观遗传调控方式及其机制进行阐述,重点介绍DNA甲基化、组蛋白修饰、非编码RNA调控和RNA修饰等表观遗传修饰方式,总结这些调控对于HIV潜伏、激活和维持过程的影响。同时,将HIV感染过程中的表观遗传调控与其关联的信号通路联系起来,并根据近年来在HIV功能性治疗策略方面取得的成果与挑战进行展望,旨在阐明表观遗传在HIV调控方面的重要作用,以期为未来根据表观遗传调控实现AIDS的控制以及开发治疗药物提供新的理论基础和研究方向。
  • 综述
    杨新玲, 张栋栋, 常晓彤
    中国生物化学与分子生物学报. 2025, 41(3): 384-392. https://doi.org/10.13865/j.cnki.cjbmb.2024.12.1299
    相分离是细胞内生物分子由单一均相混合物形成2种不相溶的液滴凝聚体过程,是细胞内分子凝聚体和无膜细胞器形成的主要驱动力。相分离不仅在多种生理活动中发挥重要的动态调控作用,而且调控神经退行性疾病和癌症等多种疾病的发生发展。已有研究发现,长非编码RNA(lncRNA)与相分离密切相关,这为理解lncRNA的作用机制打开了新的视角,成为近年来非编码RNA领域的研究热点。本文重点介绍了LncRNA SLERT作为分子伴侣与DDX21蛋白相互作用,影响核仁纤维中心区/高密度纤维区(FC/DFCs)的相分离;LINC00657(NORAD)与PUM蛋白形成NP小体,驱动PUM蛋白的相分离而抑制其活性,促进基因组的稳定性;dilncRNA调控DNA损伤应答小RNAs (DDRNA)、p53结合蛋白1(53BP1) 的相分离,lncRNA LINP1相分离液滴与Ku蛋白结合促进DNA损伤修复;LncRNA SNHG9、MELTF-AS1、MALR 分别驱动LATS1、YBX1、ILF3蛋白质的相分离发挥促癌lncRNAs作用,GIRGL、LncFASA分别调控CAPRIN1、PRDX1的相分离在癌症发展中发挥抑癌基因作用;lncRNA XIST通过相分离驱动X染色体失活的研究。总之,本文综述了lncRNAs通过调节相分离在细胞核无膜细胞器的形成、基因组稳定性与DNA损伤修复、肿瘤发生发展和X染色体失活等病理生理过程中的最新研究进展。本文表明长非编码RNA可通过调节相分离,参与多种病理生理过程,有望为相分离介导的疾病的治疗提供新的方向。
  • 研究论文
    曹腾辉, 龙兴旺, 刘林, 王刚林, 李伟
    中国生物化学与分子生物学报. 2025, 41(2): 249-259. https://doi.org/10.13865/j.cnki.cjbmb.2025.01.1353
    植物外泌体样纳米囊泡是指从植物中分离的含有脂质、蛋白质、RNA和各种小分子的球状脂质囊泡,具有抗炎、抗肿瘤、抗氧化和药物载体等方面功效,然而黄精衍生的纳米囊泡的功能尚未见报道。本文利用超速离心和密度梯度离心,首次从黄精中获得了外泌体样纳米囊泡(rhizoma polygonati exosome-like nanovesicles, RP-EVs),并对其表征和抗炎功能进行探究。结果:RP-EVs是主要带负电荷,平均粒径为166.5±3.3 nm的球状脂质囊泡。细胞摄取实验显示,RP-EVs可以被巨噬细胞吞噬。qPCR以及ELISA研究表明,RP-EVs可以抑制脂多糖(lipopolysaccharides, LPS)刺激引起的白细胞介素6(interleukin 6, IL-6)、白细胞介素1β(IL-1β)和肿瘤坏死因子α(tumor necrosis factor-alpha, TNF-α) (****P<0.0001)的升高。不仅如此,活性氧(reactive oxygen species, ROS)及DPPH清除实验证实,RP-EVs具有一定的抗氧化功能(*P<0.05)。进一步探究其机制,利用免疫荧光以及Western印迹检测发现,RP-EVs是通过IκBα/NF-κB信号通路抑制细胞核因子p65(nuclear factor kappa-B p65, NF-κB p65)的入核转运(**P<0.01)及磷酸化(***P<0.001),进而调控炎症因子表达。经动物实验,将RP-EVs腹腔注射至小鼠体内48 h,主要定位于小鼠的肝和脾。最后,利用腹腔注射LPS构建小鼠急性炎症模型,通过qPCR以及ELISA法检测炎症因子水平,发现RP-EVs可以缓解LPS引起的小鼠血清和脾中的炎症因子的表达(*P<0.05)。总之,本论文首次分离获得了RP-EVs,并揭示了其抗炎功能和潜在的机制,将为中药来源的纳米囊泡的功能探究提供一定的参考,为炎症性相关疾病的治疗提供新的策略。
  • 综述
    齐鸣, 王文梦, 李当当
    中国生物化学与分子生物学报. 2025, 41(4): 494-504. https://doi.org/10.13865/j.cnki.cjbmb.2024.12.1415
    在基因转录的经典模型中,转录因子通过与含有其“共有基序”的双链DNA(double-stranded DNA, dsDNA)结合来调控靶基因转录。与dsDNA不同,G-四链体是一种非典型的核酸二级结构,由富含鸟嘌呤的序列形成,参与调节基因转录等多种生物学过程,是目前分子生物学领域研究热点。近期,多个研究组发现,与dsDNA相比,G-四链体结构更高效地招募转录因子结合到启动子上,从而激活靶基因表达。然而,目前对这种非经典的基因转录调控模型缺乏全面的总结和探讨。本文介绍了G-四链体结构特点及检测该结构的技术。G-四链体包括分子内和分子间类型,其中分子内G-四链体又分为平行、反平行和杂交类型;该结构可通过圆二色谱、核磁共振光谱和凝胶迁移等技术进行鉴定。进而讨论了G-四链体在基因转录中的调节功能。G-四链体主要在基因启动子区高度富集;早期研究揭示,G-四链体可抑制基因转录,而近期的大量研究证明,该结构具备招募转录因子激活基因转录的新功能。最后,总结了具有G-四链体结合活性的转录因子的分类,包括C2H2锌指、叉状头/翼状螺旋、以及p53结构域的转录因子,且DNA结合结构域决定转录因子与G-四链体结合;并对该领域的后续研究方向进行了展望。总之,本文为理解“G-四链体作为转录激活的顺式作用元件”的观点提供重要指导。
  • 综述
    梅翠云, 姚平波, 蔡瑞
    中国生物化学与分子生物学报. 2025, 41(9): 1257-1267. https://doi.org/10.13865/j.cnki.cjbmb.2025.08.1534
    随着全球肥胖人数的不断上升,肥胖对生殖生理的影响引起社会广泛关注。肥胖是一种代谢性疾病,通常伴随着脂肪聚积过多及炎症反应加剧等多种异常生理现象,严重影响人类与动物的生殖健康。由肥胖引起的生殖损伤涉及一系列复杂的生化反应和体内代谢通路,表现为对雄性精子质量和雌性受孕能力的损害。为了更好的理解肥胖与生殖生理之间的关系,本文就肥胖引起机体生殖损伤及其作用机制进行了归纳总结。肥胖状态下,诱发氧化应激、胰岛素抵抗及高胰岛素血症等病症,脂肪因子(瘦素、脂联素、抵抗素等)和炎症因子(TNF-α、IL-6、IL-1β等)多种因素相互影响共同作用于生殖系统。氧化应激可激活MAPK与NF-κB通路,干扰胰岛素信号传导。慢性炎症导致脂肪细胞分泌紊乱,扰乱下丘脑-垂体-性腺调控轴。研究发现,雄性肥胖个体睾酮水平显著降低,精子质量受损;雌性肥胖个体生殖系统激素失衡,产生排卵障碍,出现多囊卵巢综合征患者。本综述讨论了肥胖引起机体代谢紊乱进而导致雄性和雌性的生殖生理功能受损及其发生机制,为未来肥胖相关的生殖生理障碍疾病的预防与治疗提供理论依据。
  • 研究论文
    沈瑞莉, 李汉兵, 范雨薇, 程霓虹, 毋文静, 张瑾
    中国生物化学与分子生物学报. 2025, 41(5): 696-706. https://doi.org/10.13865/j.cnki.cjbmb.2025.03.1021
    非酒精性脂肪肝病(NAFLD)发病率逐年升高,目前治疗方案主要通过调整饮食结合运动来缓解,缺乏针对性药物。miR-29家族成员(miR-29a、miR-29b、miR-29c)在肝细胞内脂质代谢中发挥重要调控作用,但机制不明。本文旨在鉴定其靶基因及相关信号通路,为NAFLD药物开发提供理论依据。首先,以人源肝细胞系HepG2诱导其脂质积累为模型,分别转染miR-29a/b/c-3p mimics,利用油红O、甘油三酯(TG)检测等发现,miR-29家族成员可显著抑制肝细胞脂质积累(P<0.05);然后,利用qRT-PCR和Western印迹检测成脂标志基因(脂肪酸合成酶(FAS)、乙酰辅酶A羧化酶(ACACA)、硬脂酰辅酶A去饱和酶1(Scd1))和自噬标志基因(自噬街头蛋白(SQSTM1, 又称p62)、自噬相关蛋白5(Atg5))表达水平,结果表明,miR-29家族成员可显著抑制肝细胞内FAS、ACACA、Scd1和p62基因的表达,同时显著提高Atg5基因的水平;再利用信号通路活性分析和双荧光素酶报告分析等技术,确定miR-29家族成员可抑制mTOR信号通路活性,并与TET蛋白2(TET2)基因存在直接相互作用关系。利用共转染等技术研究miR-29-3p家族成员之间是否存在协同作用,结果发现,与单独转染miR-29家族成员相比,共转染miR-29家族成员能更显著抑制HepG2细胞中脂滴的沉积,并且进一步抑制靶基因TET2的表达。综上所述,miR-29家族成员在肝细胞中可能通过靶基因TET2抑制mTOR信号通路活性,从而降低肝细胞的脂质积累,并且miR-29家族成员之间具有正向协同作用。