Role of Tumor-derived Exosomal Long Non-coding RNA in Tumor Microenvironment
GUO Meng-Qi1), REN Wei-Hong2)*, HE Jiao1)
1)Laboratory of Tumor Molecular Diagnosis Technology, First Clinical Medical College, Henan University of Chinese Medicine, Zhengzhou 450046, China; 2)Department of Clinical Laboratory, First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou 450000, China
Abstract:Exosomes are cell-secreted nano-scale vesicles which are rich in a variety of biologically active substances and function as the important mediators in cell-to-cell communication. Long non-coding RNAs (lncRNAs) have impacts on the tumorigenesis and tumor progression from various aspects, and are specifically sorted into exosomes. Tumor microenvironment (TME), an internal environment composed of tumor cells, non-tumor cells (such as endothelial cells, immune cells, fibroblasts, etc.) and extracellular matrix, plays a vital role in the tumorigenesis and tumor progression. Tumor cells secrete large amounts of exosomes into TME. This article summarizes the roles of tumor-derived exosomal lncRNAs in TME from the perspective of how they regulate receptor cells, such as promoting tumor metastasis, drug resistance, cell metabolic reprogramming, tumor stemness, epithelial to mesenchymal transition (EMT), tumor angiogenesis and lymphangiogenesis, and immunosuppression. An in-depth understanding of the role of tumor-derived exosomal lncRNA in TME will help to provide potential new clinical biomarkers and therapeutic targets for cancer.
郭梦琦, 任伟宏, 贺娇. 肿瘤外泌体lncRNA在肿瘤微环境中的作用[J]. 中国生物化学与分子生物学报, 2021, 37(12): 1601-1610.
GUO Meng-Qi, REN Wei-Hong, HE Jiao. Role of Tumor-derived Exosomal Long Non-coding RNA in Tumor Microenvironment. Chinese Journal of Biochemistry and Molecular Biol, 2021, 37(12): 1601-1610.
[1] Kalluri R, LeBleu VS. The biology, function, and biomedical applications of exosomes[J]. Science, 2020, 367(6478): eaau6977 [2] Mathieu M, Martin-Jaular L, Lavieu G, et al. Specificities of secretion and uptake of exosomes and other extracellular vesicles for cell-to-cell communication[J]. Nat Cell Biol, 2019, 21(1): 9-17 [3] McKelvey KJ, Powell KL, Ashton AW, et al. Exosomes: mechanisms of uptake[J]. J Circ Biomark, 2015, 4: 7 [4] Luo Y, Yang JQ, Yu J, et al. Long non-coding RNAs: emerging roles in the immunosuppressive tumor microenvironment[J]. Front Oncol, 2020, 10: 48 [5] Arcucci V, Stacker SA, Achen MG. Control of gene expression by exosome-derived non-coding RNAs in cancer angiogenesis and lymphangiogenesis[J]. Biomolecules, 2021, 11(2): 249 [6] BatagovAO, Kuznetsov VA, Kurochkin IV. Identification of nucleotide patterns enriched in secreted RNAs as putative cis-acting elements targeting them to exosome nano-vesicles[J]. BMC Genomics, 2011, 12(Suppl3): S18 [7] XuR, Rai AL, Chen MS, et al. Extracellular vesicles in cancer-implications for future improvements in cancer care[J]. Nat Rev Clin Oncol, 2018, 15(10): 617-638 [8] Lin AF, Li CL, Xing Z, et al. The LINK-A lncRNA activates normoxic HIF1α signaling intriple-negative breast cancer[J]. Nat Cell Biol, 2016, 18(2): 213-224 [9] Xiang SX, Gu H, Jin L, et al. LncRNA IDH1-AS1 links the functions of c-Myc and HIF1α via IDH1 to regulate the Warburg effect[J]. Proc Natl Acad Sci USA, 2018, 115(7): E1465-E1474 [10] Wang T, Gilkes DM, Takano N, et al. Hypoxia-inducible factors and RAB22A mediate formation of microvesicles that stimulate breast cancer invasion and metastasis[J]. Proc Natl Acad Sci USA, 2014, 111(31): E3234-3242 [11] Logozzi M, Spugnini E, Mizzoni D, et al. Extracellular acidity and increased exosome release as key phenotypes of malignant tumors[J]. Cancer Metastasis Rev, 2019, 38(1-2): 93-101 [12] Choudhry H, Harris AL. Advances in hypoxia-inducible factor biology[J]. Cell Metab, 2018, 27(2): 281-298 [13] Xu JC, Xiao Y, Liu B, et al. Exosomal MALAT1 sponges miR-26a/26b to promote the invasion and metastasis of colorectal cancer via FUT4 enhanced fucosylation and PI3K/Akt pathway[J]. J Exp Clin Cancer Res, 2020, 39(1): 54 [14] Huang CS, Ho JY, Chiang JH, et al. Exosome-derived LINC00960 and LINC02470 promote the epithelial-mesenchymal transition and aggressiveness of bladder cancer cells[J]. Cells, 2020, 9(6): 1419 [15] Jia JJ, Guo SQ, Zhang D, et al. Exosomal-lncRNA DLEU1 accelerates the proliferation, migration, and invasion of endometrial carcinoma cells by regulating microRNA-E2F3[J]. Onco Targets Ther, 2020, 13: 8651-8663 [16] Chai Y, Wu HT, Liang CD, et al. Exosomal lncRNA ROR1-AS1 derived from tumor cells promotes glioma progression via regulating miR-4686[J]. Int J Nanomedicine, 2020, 15: 8863-8872 [17] Chen XJ, Liu YQ, Zhang QL, et al. Exosomal long non-coding RNA HOTTIP increases resistance of colorectal cancer cells to mitomycin via impairing miR-214-mediated degradationof KPNA3[J]. Front Cell Dev Biol, 2021, 8: 582723 [18] Han ML, Gu YT, Lu PW, et al. Exosome-mediated lncRNA AFAP1-AS1 promotes trastuzumab resistance through binding with AUF1 and activatingERBB2 translation[J]. Mol Cancer, 2020, 19(1): 26 [19] Zheng ZQ, Chen ML, Xing P, et al. Increased expression of exosomal AGAP2-AS1 (AGAP2 antisense RNA 1) in breast cancer cells inhibits trastuzumab-induced cell cytotoxicity[J]. Med Sci Monit, 2019, 25: 2211-2220 [20] Dong HY, Wang W, Chen R, et al. Exosome-mediated transfer of lncRNASNHG14 promotes trastuzumab chemoresistance in breast cancer[J]. Int J Oncol, 2018, 53(3): 1013-1026 [21] Wang XX, Pei XH, Guo GC, et al. Exosome-mediated transfer of long noncoding RNA H19 induces doxorubicin resistance in breast cancer[J]. J Cell Physiol, 2020, 235(10): 6896-6904 [22] Xu CG, Yang MF, Ren YQ, et al. Exosomes mediated transfer of lncRNA UCA1 results in increased tamoxifen resistance in breast cancer cells[J]. Eur Rev Med Pharmacol Sci, 2016, 20(20): 4362-4368 [23] Wang XW, Yu HM, Yu ZF, et al. Exosomal lncRNA HEIH promotes cisplatin resistance in tongue squamous cell carcinoma via targeting miR-3619-5p/HDGF axis[J]. Acta Histochem, 2020, 122(8): 151647 [24] Liu H, Luo JY, Luan SY, et al. Long non-coding RNAs involved in cancer metabolic reprogramming[J]. Cell Mol Life Sci, 2019, 76(3): 495-504 [25] Chen DP, Li YS, Wang YK, et al. LncRNA HOTAIRM1 knockdown inhibits cell glycolysis metabolism and tumor progression by miR-498/ABCE1 axis in non-small cell lung cancer[J]. Genes Genomics, 2021, 43(2): 183-194 [26] Zhao WY, Liu YQ, Zhang CF, et al. Multiple roles of exosomal long noncoding RNAs in cancers[J]. Biomed Res Int, 2019, 2019: 1460572 [27] Takahashi K, Yan IK, Haga H, et al. Modulation of hypoxia-signaling pathways by extracellular linc-RoR[J]. J Cell Sci, 2014, 127(Pt7): 1585-1594 [28] He XQ, Yu JJ, Xiong L, et al. Exosomes derived from liver cancer cells reprogram biological behaviors of LO2 cells by transferring Linc-ROR[J]. Gene, 2019, 719: 144044 [29] 邢正操, 樊秋菊, 吴宏梅. 肿瘤干细胞的代谢[J]. 中国生物化学与分子生物学报(Xing Zheng-Cao, Fan Qiu-Ju, Wu Hong-Mei. The metabolism of cancer stem cells[J]. Chin J Biochem Mol Biol), 2020, 36(9): 1041-1047 [30] Clara JA, Monge C, Yang YZ, et al. Targeting signalling pathways and the immune microenvironment of cancer stem cells - a clinical update[J]. Nat Rev Clin Oncol, 2020, 17(4): 204-232 [31] Lecerf C, Peperstraete E, Le Bourhis X, et al. Propagation and maintenance of cancer stem cells: amajor influence of the long non-coding RNA H19[J]. Cells, 2020, 9(12): 2613 [32] Sun Z, Wang L, Dong LH, et al. Emerging role of exosome signalling in maintaining cancer stem cell dynamic equilibrium[J]. J Cell Mol Med, 2018, 22(8): 3719-3728 [33] Hardin H, Helein H, Meyer K, et al. Thyroid cancer stem-like cell exosomes: regulation of EMT via transfer of lncRNAs[J]. Lab Invest, 2018, 98(9): 1133-1142 [34] Dai WC, Jin XX, Han L, et al. Exosomal lncRNA DOCK9-AS2 derived from cancer stem cell-like cells activated Wnt/β-catenin pathway to aggravate stemness, proliferation, migration, and invasion in papillary thyroid carcinoma[J]. Cell Death Dis, 2020, 11(9): 743 [35] Li W, Zhang LY, Guo BB, et al. Exosomal FMR1-AS1 facilitates maintaining cancer stem-like cell dynamic equilibrium via TLR7/NFκB/c-Myc signaling in female esophageal carcinoma[J]. Mol Cancer, 2019, 18(1): 22-36 [36] Huang XX, Liu XM, Du B, et al. LncRNA LINC01305 promotes cervical cancer progression through KHSRP and exosome-mediated transfer[J]. Aging (Albany NY), 2021, 13(15): 19230-19242 [37] Li ZH, Jiang P, Li J, et al. Tumor-derived exosomal lnc-Sox2ot promotes EMT and stem-ness by acting as a ceRNA in pancreatic ductal adenocarcinoma[J]. Oncogene, 2018, 37(28): 3822-3838 [38] Lee JM, Dedhar S, Kalluri R, et al. The epithelial-mesenchymal transition: new insights insignaling, development, and disease[J]. J Cell Biol, 2006, 172(7): 973-981 [39] Shibue T, Weinberg RA. EMT, CSCs, and drug resistance: the mechanistic link and clinical implications[J]. Nat Rev Clin Oncol, 2017, 14(10): 611-629 [40] Dudas J, Ladanyi A, Ingruber J, et al. Epithelial to mesenchymal transition: amechanism that fuels cancer radio/chemoresistance[J]. Cells, 2020, 9(2): 428 [41] Andreucci E, Peppicelli S, Carta F, et al. Carbonic anhydrase IX inhibition affects viability of cancer cells adapted to extracellular acidosis[J]. J Mol Med (Berl), 2017, 95(12): 1341-1353 [42] Zhou SH, Zhu Y, Li ZM, et al. Exosome-derived long non-coding RNA ADAMTS9-AS2 suppresses progression of oral submucous fibrosis via AKT signalling pathway[J]. J Cell MolMed, 2021, 25(4): 2262-2273 [43] Piao HY, Guo S, Wang Y, et al. Exosome-transmitted lncRNA PCGEM1 promotes invasive and metastasis in gastric cancer by maintaining the stability of SNAI1[J]. Clin Transl Oncol, 2021, 23(2): 246-256 [44] Takahashi K, Ota Y, Kogure T, et al. Circulating extracellular vesicle-encapsulated HULC is a potential biomarker for human pancreatic cancer[J]. Cancer Sci, 2020, 111(1): 98-111 [45] Chang TM, Chu PY, Hung WC, et al. c-Myc promotes lymphatic metastasis of pancreatic neuroendocrine tumor through VEGFC upregulation[J]. Cancer Sci, 2021, 112(1): 243-253 [46] Apte RS, Chen DS, Ferrara N. VEGF in signaling and disease: beyond discovery and development[J]. Cell, 2019, 176(6): 1248-1264 [47] Stacker SA, Williams SP, Karnezis T, et al. Lymphangiogenesis and lymphatic vessel remodelling in cancer[J]. Nat Rev Cancer, 2014, 14(3): 159-172 [48] Ma X, Li ZH, Li T, et al. Long non-coding RNA HOTAIR enhances angiogenesis by induction of VEGFA expression in glioma cells and transmission to endothelial cells via glioma cell derived-extracellular vesicles[J]. Am J Transl Res, 2017, 9(11): 5012-5021 [49] Lang HL, Hu GW, Chen Y, et al. Glioma cells promote angiogenesis through the release of exosomes containing long non-coding RNA POU3F3[J]. Eur Rev Med Pharmacol Sci, 2017, 21(5): 959-972 [50] Yang YQ, Luo ZM, Qin YY, et al. Production of bFGF monoclonal antibody and its inhibition of metastasis in Lewis lung carcinoma[J]. Mol Med Rep, 2017, 16(4): 4015-4021 [51] 赵佳, 杨剑丽, 温得中, 等. 新霉胺通过抑制血管生成素活性抑制人黑色素瘤细胞增殖、迁移和侵润[J]. 中国生物化学与分子生物学报(Zhao J, Yang JL, Wen DZ, et al. Neamine inhibits A375 human melanoma cell proliferation, migration, and invasion by blocking angiogenin activity[J]. Chin J Biochem Mol Biol), 2015, 31(12): 1309-1314 [52] Lang HL, Hu GW, Zhang B, et al. Glioma cells enhance angiogenesis and inhibit endothelial cell apoptosis through the release of exosomes that contain long non-coding RNA CCAT2[J]. Oncol Rep, 2017, 38(2): 785-798 [53] Cheng C, Zhang ZC, Cheng FL, et al. Exosomal lncRNA RAMP2-AS1 derived from chondrosarcoma cells promotes angiogenesis through miR-2355-5p/VEGFR2 axis[J]. Onco Targets Ther, 2020, 13: 3291-3301 [54] Zhang CY, Luo Y, Cao JJ, et al. Exosomal lncRNA FAM225A accelerates esophageal squamous cell carcinoma progression and angiogenesis via sponging miR-206 to upregulate NETO2 and FOXP1 expression[J]. Cancer Med, 2020, 9(22): 8600-8611 [55] Guo ZY, Wang XF, Yang YH, et al. Hypoxic tumor-derived exosomal long noncoding RNA UCA1 promotes angiogenesis via miR-96-5p/AMOTL2 in pancreatic cancer[J]. Mol Ther Nucleic Acids, 2020, 22: 179-195 [56] Hong HJ, Jiang L, Lin YF, et al. TNF-alpha promotes lymphangiogenesis and lymphatic metastasis of gallbladder cancer through the ERK1/2/AP-1/VEGF-D pathway[J]. BMC Cancer, 2016, 16: 240 [57] Chen CH, Luo YM, He W, et al. Exosomal long noncoding RNA LNMAT2 promotes lymphatic metastasis in bladder cancer[J]. J Clin Invest, 2020, 130(1): 404-421 [58] Rudzińska M, Mikula M, Arczewska KD, et al. Transcription factor prospero homeobox 1(PROX1) as a potential angiogenic regulator of follicular thyroid cancer dissemination[J]. Int J Mol Sci, 2019, 20(22): 5619 [59] Hu QS, Ye YQ, Chan LC, et al. Oncogenic lncRNA downregulates cancer cell antigen presentation and intrinsic tumor suppression[J]. Nat Immunol, 2019, 20(7): 835-851 [60] Xu JY, Shi AA, Long ZL, et al. Capturing functional long non-coding RNAs through integrating large-scale causal relations from gene perturbation experiments[J]. EBioMedicine, 2018, 35: 369-380 [61] Zhang Y, Liao GM, Bai J, et al. Identifying cancer driver lncRNAs bridged by functional effectors through integrating multi-omics data in human cancers[J]. Mol Ther Nucleic Acids, 2019, 17: 362-373 [62] Dong R, Zhang B, Tan BQ, et al. Long non-coding RNAs as the regulators and targetsof macrophage M2 polarization[J]. Life Sci, 2021, 266: 118895 [63] Liang ZX, Liu HS, Wang FW, et al. LncRNA RPPH1 promotes colorectal cancer metastasis by interacting with TUBB3 and by promoting exosomes-mediated macrophage M2 polarization[J]. Cell Death Dis, 2019, 10(11): 829 [64] Li X, Lei Y, Wu M, et al. Regulation of macrophage activation and polarization by HCC-derived exosomal lncRNA TUC339[J]. Int J Mol Sci, 2018, 19(10): 2958 [65] Liang YR, Song XJ, Li YM, et al. LncRNA BCRT1 promotes breast cancer progression by targeting miR-1303/PTBP3 axis[J]. Mol Cancer, 2020, 19(1): 85 [66] Zhang Y, Feng JB, Fu HJ, et al. Coagulation factor X regulated by CASC2c recruited macrophages and induced M2 polarization in glioblastoma multiforme[J]. Front Immunol, 2020, 9: 1557 [67] Ni C, Fang QQ, Chen WZ, et al. Breast cancer-derived exosomes transmit lncRNA SNHG16 to induce CD73+γδ1 Treg cells[J]. Signal Transduct Target Ther, 2020, 5(1): 41 [68] Sun JF, Jia HW, Bao XQ, et al. Tumor exosome promotes Th17 cell differentiation by transmitting the lncRNA CRNDE-h in colorectal cancer[J]. Cell Death Dis, 2021, 12(1): 123 [69] Fan F, Chen KJ, Lu XL, et al. Dual targeting of PD-L1 and PD-L2 by PCED1B-AS1 viasponging hsa-miR-194-5p induces immunosuppression in hepatocellular carcinoma[J]. Hepatol Int, 2021, 15(2): 444-458 [70] Lu YH, Chen L, Li LD, et al. Exosomes derived from brain metastatic breast cancer cellsdestroy the blood-brain barrier by carrying lncRNA GS1-600G8.5[J]. Biomed Res Int, 2020, 2020: 7461727 [71] Chen CW, Fu M, Du ZH, et al. Long noncoding RNA MRPL23-AS1 promotes adenoid cystic carcinoma lung metastasis[J]. Cancer Res, 2020, 80(11): 2273-2285 [72] Hu TR, Hu JC. Melanoma-derived exosomes induce reprogramming fibroblasts into cancer-associated fibroblasts via Gm26809 delivery[J]. Cell Cycle, 2019, 18(22): 3085-3094 [73] Tong YS, Yang LL, Yu CH, et al. Tumor-secreted exosomal lncRNA POU3F3 promotes cisplatin resistance in ESCC by inducing fibroblast differentiation into CAFs[J]. Mol Ther Oncolytics, 2020, 18: 1-13 [74] Bian EB, Chen EF, Xu YD, et al. Exosomal lncRNAATB activates astrocytes that promote glioma cell invasion[J]. Int J Oncol, 2019, 54(2): 713-721