[1] Hayflick L. The limited in vitro lifetime of human diploid cell strains[J]. Exp Cell Res, 1965, 37: 614-636
[2] 应乐倩, 余晖, 王雨婷, 等. 端粒DNA损伤与细胞衰老的研究进展[J]. 中国细胞生物学学报(Ying LQ, Yu H, Wang YT, et al. The progress of telomere DNA damage and cell senescence[J]. Chin J Cell Biol), 2018, 40(3): 403-411
[3] Lopez-Otin C, Blasco MA, Partridge L, et al. The hallmarks of aging[J]. Cell, 2013, 153(6): 1194-1217
[4] Braig M, Lee S, Loddenkemper C, et al. Oncogene-induced senescence as an initial barrier in lymphoma development[J]. Nature, 2005, 436(7051): 660-665
[5] Zhang R, Chen W, Adams PD. Molecular dissection of formation of senescence-associated heterochromatin foci[J]. Mol Cell Biol, 2007, 27(6): 2343-2358
[6] Narita M, Nunez S, Heard E, et al. Rb-mediated heterochromatin formation and silencing of E2F target genes during cellular senescence[J]. Cell, 2003, 113(6): 703-716
[7] 韩知忖, 刘冰, 周辉. 人参皂苷Rg1对神经细胞衰老和衰老相关异染色质聚集的影响[J]. 浙江中西医结合杂志(Han ZC, Liu B, Zhou H. Effects of ginsenoside Rg1 on senescent nerve cells and senescence-associated heterochromatic foci[J]. Zhejiang J Integr Trad Chin West Med), 2016, 26(4): 322-323
[8] Kosar M, Bartkova J, Hubackova S, et al. Senescence-associated heterochromatin foci are dispensable for cellular senescence, occur in a cell type- and insult-dependent manner and follow expression of p16(ink4a)[J]. Cell Cycle, 2011, 10(3): 457-468
[9] Funayama R, Ishikawa F. Cellular senescence and chromatin structure[J]. Chromosoma, 2007, 116(5): 431-440
[10] Freund A, Laberge RM, Demaria M, et al. Lamin B1 loss is a senescence-associated biomarker[J]. Mol Biol Cell, 2012, 23(11): 2066-2075
[11] Wang AS, Ong PF, Chojnowski A, et al. Loss of lamin B1 is a biomarker to quantify cellular senescence in photoaged skin[J]. Sci Rep, 2017, 7(1): 15678
[12] 俞文华, 毛泽斌. 衰老相关分泌表型的生物学意义及其在肿瘤和老年病中的作用机制[J]. 老年医学与保健(Yu WH, Mao ZB. Biological significance of senescence-associated secretory phenotype and its mechanism in the treatment of tumor and senile diseases[J] Geriatr Health Care), 2018, 24(6): 576-580
[13] Kuilman T, Peeper DS. Senescence-messaging secretome: SMS-ing cellular stress[J]. Nat Rev Cancer, 2009, 9(2): 81-94
[14] Ishikawa F. Cellular senescence, an unpopular yet trustworthy tumor suppressor mechanism[J]. Cancer Sci, 2003, 94(11): 944-947
[15] Lee S, Lee JS. Cellular senescence: a promising strategy for cancer therapy[J] BMB Rep, 2019, 52(1): 35-41
[16] Zhou W, Wang J, Qi Q, et al. Matrine induces senescence of human glioblastoma cells through suppression of the IGF1/PI3K/AKT/p27 signaling pathway[J]. Cancer Med, 2018, 7(9): 4729-4743
[17] 尚文涛, 王敏娜. p53 基因在癌症发展过程中作用的研究[J]. 世界最新医学信息文摘(Shang WT, Wang MN. Function study of p53 gene in development of cancer[J]. World Latest Med Inf), 2018, 18(20): 34-35
[18] Choi OR, Ryu MS, Lim IK. Shifting p53-induced senescence to cell death by TIS21(/BTG2/Pc3) gene through posttranslational modification of p53 protein[J]. Cell Signal, 2016, 28(9): 1172-1185
[19] Beausejour CM, Krtolica A, Galimi F, et al. Reversal of human cellular senescence: roles of the p53 and p16 pathways[J]. EMBO J, 2003, 22(16): 4212-4222
[20] Parrinello S, Samper E, Krtolica A, et al. Oxygen sensitivity severely limits the replicative lifespan of murine fibroblasts[J]. Nat Cell Biol, 2003, 5(8): 741-747
[21] d'Adda di Fagagna F, Reaper PM, Clay-Farrace L, et al. A DNA damage checkpoint response in telomere-initiated senescence[J]. Nature, 2003, 426(6963): 194-198
[22] Sherr CJ, McCormick F. The RB and p53 pathways in cancer[J]. Cancer Cell, 2002, 2(2): 103-112
[23] 刘双虎, 王守志, 张慧, 等. 视网膜母细胞瘤基因1(RB1)研究进展[J]. 遗传(Liu SH, Wang SZ, Zhang Hui, et al. Research advances on RB1 gene[J]. Hereditas), 2010, 32(11): 1097-1104
[24] Zhang R, Poustovoitov MV, Ye X, et al. Formation of MacroH2A-containing senescence-associated heterochromatin foci and senescence driven by ASF1a and HIRA[J]. Dev Cell, 2005, 8(1): 19-30
[25] Brandmaier A, Hou SQ, Shen WH. Cell cycle control by PTEN[J]. J Mol Biol, 2017, 429(15): 2265-2277
[26] Sang B, Zhang YY, Guo ST, et al. Dual functions for OVAAL in initiation of RAF/MEK/ERK prosurvival signals and evasion of p27-mediated cellular senescence[J]. Proc Natl Acad Sci U S A, 2018, 115(50): E11661- E11670
[27] Li J, Yin LL, Su KL, et al. Concomitant depletion of PTEN and p27 and overexpression of cyclin D1 may predict a worse prognosis for patients with post-operative stage II and III colorectal cancer[J]. Oncol Lett, 2014, 8(4): 1543-1550
[28] Chen Z, Trotman LC, Shaffer D, et al. Crucial role of p53-dependent cellular senescence in suppression of Pten-deficient tumorigenesis[J]. Nature, 2005, 436(7051): 725-730
[29] Michaloglou C, Vredeveld LC, Soengas MS, et al. BRAFE600-associated senescence-like cell cycle arrest of human naevi[J]. Nature, 2005, 436(7051): 720-724
[30] Pollock PM, Harper UL, Hansen KS, et al. High frequency of BRAF mutations in nevi[J]. Nat Genet, 2003, 33(1): 19-20
[31] Bennett DC. Human melanocyte senescence and melanoma susceptibility genes[J]. Oncogene, 2003, 22(20): 3063-3069
[32] Kuilman T, Michaloglou C, Vredeveld LC, et al. Oncogene-induced senescence relayed by an interleukin- dependent inflammatory network[J]. Cell, 2008, 133(6): 1019-1031
[33] Jacob K, Quang-Khuong DA, Jones DT, et al. Genetic aberrations leading to MAPK pathway activation mediate oncogene-induced senescence in sporadic pilocytic astrocytomas[J]. Clin Cancer Res, 2011, 17(14): 4650-4660
[34] Courtois-Cox S, Genther Williams SM, Reczek EE, et al. A negative feedback signaling network underlies oncogene-induced senescence[J]. Cancer Cell, 2006, 10(6): 459-472
[35] Sieben CJ, Sturmlechner I, van de Sluis B, et al. Two-step senescence-focused cancer therapies[J]. Trends Cell Biol, 2018, 28(9): 723-737
[36] Roninson IB. Tumor cell senescence in cancer treatment[J]. Cancer Res, 2003, 63(11): 2705-2715
[37] Srdic-Rajic T, Santibanez JF, Kanjer K, et al. Iscador Qu inhibits doxorubicin-induced senescence of MCF7 cells[J]. Sci Rep, 2017, 7(1): 3763
[38] Milczarek M, Wiktorska K, Mielczarek L, et al. Autophagic cell death and premature senescence: New mechanism of 5-fluorouracil and sulforaphane synergistic anticancer effect in MDA-MB-231 triple negative breast cancer cell line[J]. Food Chem Toxicol, 2018, 111: 1-8
[39] Wajapeyee N, Serra RW, Zhu X, et al. Oncogenic BRAF induces senescence and apoptosis through pathways mediated by the secreted protein IGFBP7[J]. Cell, 2008, 132(3): 363-374
[40] Kang TW, Yevsa T, Woller N, et al. Senescence surveillance of pre-malignant hepatocytes limits liver cancer development[J]. Nature, 2011, 479(7374): 547-551
[41] 郭婷, 李斌. 肿瘤的免疫治疗与衰老[J] .老年医学与保健(Guo T, Li B. Immunotherapy and aging of tumors[J] Geriatr Health Care), 2018, 24(6): 573-576
[42] Chen X, Wang C, Guan S, et al. Zidovudine, abacavir and lamivudine increase the radiosensitivity of human esophageal squamous cancer cell lines[J]. Oncol Rep, 2016, 36(1): 239-246
[43] Ding X, Cheng J, Pang Q, et al. BIBR1532, a selective telomerase inhibitor, enhances radiosensitivity of non-small cell lung cancer through increasing telomere dysfunction and ATM/CHK1 inhibition [J]. Int J Radiat Oncol Biol Phys, 2019, 105(4): 861-874
[44] Dogan F, Ozates NP, Bagca BG, et al. Investigation of the effect of telomerase inhibitor BIBR1532 on breast cancer and breast cancer stem cells[J]. J Cell Biochem, 2018, doi: 10.1002/jcb.27089
[45] Burchett KM, Etekpo A, Batra SK, et al. Inhibitors of telomerase and poly(ADP-ribose) polymerases synergize to limit the lifespan of pancreatic cancer cells[J]. Oncotarget, 2017, 8(48): 83754-83767
[46] Schrank Z, Khan N, Osude C, et al. Oligonucleotides targeting telomeres and telomerase in cancer[J]. Molecules, 2018, 23(9).pii: E2267
[47] Mizukoshi E, Kaneko S. Telomerase-targeted cancer immunotherapy[J]. Int J Mol Sci, 2019, 20(8).pii: E1823
[48] Soucy TA, Smith PG, Milhollen MA, et al. An inhibitor of NEDD8-activating enzyme as a new approach to treat cancer[J]. Nature, 2009, 458(7239): 732-736
[49] Goldman JW, Shi P, Reck M, et al. Treatment rationale and study design for the JUNIPER study: A randomized phase III study of abemaciclib with best supportive care versus Erlotinib with best supportive care in patients with stage IV non-small-cell lung cancer with a detectable KRAS mutation whose disease has progressed after platinum-based chemotherapy[J]. Clin Lung Cancer, 2016, 17(1): 80-84
[50] Turner NC, Ro J, André F, et al. Palbociclib in hormone-receptor-positive advanced breast cancer[J]. N Engl J Med, 2015, 373(3): 209-219
[51] Geoerger B, Bourdeaut F, DuBois SG, et al. A phase I study of the CDK4/6 inhibitor ribociclib (LEE011) in pediatric patients with malignant rhabdoid tumors, neuroblastoma, and other solid tumors[J]. Clin Cancer Res, 2017, 23(10): 2433-2441
[52] Childs BG, Durik M, Baker DJ, et al. Cellular senescence in aging and age-related disease: from mechanisms to therapy[J]. Nat Med, 2015, 21(12): 1424-1435
[53] Tovar C, Rosinski J, Filipovic Z, et al. Small-molecule MDM2 antagonists reveal aberrant p53 signaling in cancer: implications for therapy[J]. Proc Natl Acad Sci U S A, 2006, 103(6): 1888-1893
[54] Andreeff M, Kelly KR, Yee K, et al. Results of the phase I trial of RG7112, a small-molecule MDM2 antagonist in leukemia[J]. Clin Cancer Res, 2016, 22(4): 868-876
[55] Vaziri H, Dessain SK, Ng Eaton E, et al. hSIR2(SIRT1) functions as an NAD-dependent p53 deacetylase[J]. Cell, 2001, 107(2): 149-159
[56] Alcain FJ, Villalba JM. Sirtuin inhibitors[J]. Expert Opin Ther Pat, 2009, 19(3): 283-294
[57] Foster BA, Coffey HA, Morin MJ, et al. Pharmacological rescue of mutant p53 conformation and function[J]. Science, 1999, 286(5449): 2507-2510
[58] Qiang W, Jin T, Yang Q, et al. PRIMA-1 selectively induces global DNA demethylation in p53 mutant-type thyroid cancer cells[J]. J Biomed Nanotechnol, 2014, 10(7): 1249-1258
[59] Mohell N, Alfredsson J, Fransson A, et al. APR-246 overcomes resistance to cisplatin and doxorubicin in ovarian cancer cells[J]. Cell Death Dis, 2015, 6: e1794
[60] Bykov VJ, Issaeva N, Zache N, et al. Reactivation of mutant p53 and induction of apoptosis in human tumor cells by maleimide analogs[J]. J Biol Chem, 2005, 280(34): 30384-30391
[61] Zhang WW, Li L, Li D, et al. The first approved gene therapy product for cancer Ad-p53 (Gendicine): 12 years in the clinic[J]. Hum Gene Ther, 2018, 29(2): 160-179
[62] He CB, Lao XM, Lin XJ. Transarterial chemoembolization combined with recombinant human adenovirus type 5 H101 prolongs overall survival of patients with intermediate to advanced hepatocellular carcinoma: a prognostic nomogram study[J]. Chin J Cancer, 2017, 36(1): 59
[63] Orjalo AV, Bhaumik D, Gengler BK, et al. Cell surface-bound IL-1alpha is an upstream regulator of the senescence-associated IL-6/IL-8 cytokine network[J]. Proc Natl Acad Sci U S A, 2009, 106(40): 17031-17036
[64] Laberge RM, Zhou L, Sarantos MR, et al. Glucocorticoids suppress selected components of the senescence- associated secretory phenotype[J]. Aging Cell, 2012, 11(4): 569-578
[65] Herranz N, Gallage S, Mellone M, et al. mTOR regulates MAPKAPK2 translation to control the senescence- associated secretory phenotype[J]. Nat Cell Biol, 2015, 17(9): 1205-1217
[66] Laberge RM, Sun Y, Orjalo AV, et al. MTOR regulates the pro-tumorigenic senescence-associated secretory phenotype by promoting IL1A translation[J]. Nat Cell Biol, 2015, 17(8): 1049-1061
[67] Zocchi L, Wu SC, Wu J, et al. The cyclin-dependent kinase inhibitor flavopiridol (alvocidib) inhibits metastasis of human osteosarcoma cells[J]. Oncotarget, 2018, 9(34): 23505-23518
[68] Zhang J, Liu S, Ye Q, et al. Transcriptional inhibition by CDK7/9 inhibitor SNS-032 abrogates oncogene addiction and reduces liver metastasis in uveal melanoma[J]. Mol Cancer, 2019, 18(1): 140
|