[1] Supinski GS, Schroder EA, Callahan LA. Mitochondria and Critical Illness [J]. Chest, 2019, pii:S0012-3692(19)33739-0
[2] Spinelli JB, Haigis MC. The multifaceted contributions of mitochondria to cellular metabolism [J]. Nat Cell Biol, 2018, 20(7): 745-754
[3] Schieber M, Chandel NS. ROS function in redox signaling and oxidative stress [J]. Curr Biol, 2014, 24(10): R453-462
[4] Linden DR, Levitt MD, Farrugia G, et al. Endogenous production of H2S in the gastrointestinal tract: still in search of a physiologic function [J]. Antioxid Redox Signal, 2010, 12(9): 1135-1146
[5] Levitt MD, Abdel-Rehim MS, Furne J. Free and acid-labile hydrogen sulfide concentrations in mouse tissues: anomalously high free hydrogen sulfide in aortic tissue [J]. Antioxid Redox Signal, 2011, 15(2): 373-378
[6] Abate M, Festa A, Falco M, et al. Mitochondria as playmakers of apoptosis, autophagy and senescence [J]. Semin Cell Dev Biol, 2019, pii: S1084-9521(18)30187-3
[7] Tilokani L, Nagashima S, Paupe V, et al. Mitochondrial dynamics: overview of molecular mechanisms [J]. Essays Biochem, 2018, 62(3): 341-360
[8] Eisner V, Picard M, Hajnoczky G. Mitochondrial dynamics in adaptive and maladaptive cellular stress responses [J]. Nat Cell Biol, 2018, 20(7): 755-765
[9] Picard M, Azuelos I, Jung B, et al. Mechanical ventilation triggers abnormal mitochondrial dynamics and morphology in the diaphragm [J]. J Appl Physiol (1985), 2015, 118(9): 1161-1171
[10] KENNEDY EP, LEHNINGER AL. Oxidation of fatty acids and tricarboxylic acid cycle intermediates by isolated rat liver mitochondria [J]. J Biol Chem, 1949, 179(2): 957-972
[11] Walsh CT, Tu BP, Tang Y. Correction to: Eight Kinetically Stable but Thermodynamically Activated Molecules that Power Cell Metabolism [J]. Chem Rev, 2018, 118(10): 5261-5263
[12] Rolfe DF, Brown GC. Cellular energy utilization and molecular origin of standard metabolic rate in mammals [J]. Physiol Rev, 1997, 77(3): 731-758
[13] Hara KY, Kondo A. ATP regulation in bioproduction [J]. Microb Cell Fact, 2015, 14: 198
[14] Patel A, Malinovska L, Saha S, et al. ATP as a biological hydrotrope [J]. Science, 2017, 356(6339): 753-756
[15] Mishra P, Carelli V, Manfredi G, et al. Proteolytic cleavage of Opa1 stimulates mitochondrial inner membrane fusion and couples fusion to oxidative phosphorylation [J]. Cell Metab, 2014, 19(4): 630-641
[16] Ke R, Xu Q, Li C, et al. Mechanisms of AMPK in the maintenance of ATP balance during energy metabolism [J]. Cell Biol Int, 2018, 42(4): 384-392
[17] Wang X, Zhang X, Wu D, et al. Mitochondrial flashes regulate ATP homeostasis in the heart [J]. Elife, 2017, 6.pii: e23908
[18] Wang X, Zhang X, Huang Z, et al. Protons Trigger Mitochondrial Flashes [J]. Biophys J, 2016, 111(2): 386-394
[19] 关丫丫, 章小英, 王辉, 等. 线粒体ATP合酶抑制因子(ATPIF1)在能量代谢中的作用 [J]. 生理科学进展(Guan YY, Zhang XY, Wang H, et al. Prog Physiol Sci), 2018, 49(3): 230-236
[20] García-Bermúdez J, Cuezva JM. The ATPase Inhibitory Factor 1 (IF1): A master regulator of energy metabolism and of cell survival [J]. Biochim Biophys Acta, 2016, 1857(8): 1167-1182
[21] Esparza-Moltó PB, Nuevo-Tapioles C, Cuezva JM. Regulation of the H+-ATP synthase by IF1: a role in mitohormesis [J]. Cell Mol Life Sci, 2017, 74(12): 2151-2166
[22] García-Aguilar A, Cuezva JM. A Review of the Inhibition of the Mitochondrial ATP Synthase by IF1 in vivo: Reprogramming Energy Metabolism and Inducing Mitohormesis [J]. Front Physiol, 2018, 9: 1322
[23] Campanella M, Casswell E, Chong S, et al. Regulation of mitochondrial structure and function by the F1Fo-ATPase inhibitor protein, IF1 [J]. Cell Metab, 2008, 8(1): 13-25
[24] Chen WW, Birsoy K, Mihaylova MM, et al. Inhibition of ATPIF1 ameliorates severe mitochondrial respiratory chain dysfunction in mammalian cells [J]. Cell Rep, 2014, 7(1): 27-34
[25] He J, Ford HC, Carroll J, et al. Assembly of the membrane domain of ATP synthase in human mitochondria [J]. Proc Natl Acad Sci U S A, 2018, 115(12): 2988-2993
[26] Zhou J, Liu L, Chen J. Improved ATP supply enhances acid tolerance of Candida glabrata during pyruvic acid production [J]. J Appl Microbiol, 2011, 110(1): 44-53
[27] Wu H, Tuli L, Bennett GN, et al. Metabolic transistor strategy for controlling electron transfer chain activity in Escherichia coli [J]. Metab Eng, 2015, 28: 159-168
[28] Rossi A, Pizzo P, Filadi R. Calcium, mitochondria and cell metabolism: A functional triangle in bioenergetics [J]. Biochim Biophys Acta Mol Cell Res, 2019, 1866(7): 1068-1078
[29] Liu TC, Tang XM, Duan R, et al. The Mitochondrial Na+/Ca2+ Exchanger is Necessary but Not Sufficient for Ca2+ Homeostasis and Viability [J]. Adv Exp Med Biol, 2018, 1072: 281-285
[30] Kovacs R, Schuchmann S, Gabriel S, et al. Ca2+ signalling and changes of mitochondrial function during low-Mg2+-induced epileptiform activity in organotypic hippocampal slice cultures [J]. Eur J Neurosci, 2001, 13(7): 1311-1319
[31] Solaini G, Baracca A, Lenaz G, et al. Hypoxia and mitochondrial oxidative metabolism [J]. Biochim Biophys Acta, 2010, 1797(6-7): 1171-1177
[32] Morciano G, Bonora M, Campo G, et al. Mechanistic Role of mPTP in Ischemia-Reperfusion Injury [J]. Adv Exp Med Biol, 2017, 982: 169-189
[33] Pacheu-Grau D, Rucktäschel R, Deckers M. Mitochondrial dysfunction and its role in tissue- specific cellular stress [J]. Cell Stress, 2018, 2(8): 184-199
[34] Sheng B, Wang X, Su B, et al. Impaired mitochondrial biogenesis contributes to mitochondrial dysfunction in Alzheimer's disease [J]. J Neurochem, 2012, 120(3): 419-429
[35] Zhang Y, Zhao Z, Ke B, et al. Induction of Posttranslational Modifications of Mitochondrial Proteins by ATP Contributes to Negative Regulation of Mitochondrial Function [J]. PLoS One, 2016, 11(3): e0150454
[36] Lee JH, Zhang Y, Zhao Z, et al. Intracellular ATP in balance of pro- and anti-inflammatory cytokines in adipose tissue with and without tissue expansion [J]. Int J Obes (Lond), 2017, 41(4): 645-651
[37] Wang H, Ye J. Regulation of energy balance by inflammation: common theme in physiology and pathology [J]. Rev Endocr Metab Disord, 2015, 16(1): 47-54
[38] Ye J. Mechanisms of insulin resistance in obesity [J]. Front Med, 2013, 7(1): 14-24
[39] Montgomery MK. Mitochondrial Dysfunction and Diabetes: Is Mitochondrial Transfer a Friend or Foe? [J]. Biology (Basel), 2019, 8(2).pii: E33
[40] Lejri I, Agapouda A, Grimm A, et al. Mitochondria- and Oxidative Stress-Targeting Substances in Cognitive Decline-Related Disorders: From Molecular Mechanisms to Clinical Evidence [J]. Oxid Med Cell Longev, 2019, 2019: 9695412
[41] Alavi Naini SM, Soussi-Yanicostas N. Tau Hyperphosphorylation and Oxidative Stress, a Critical Vicious Circle in Neurodegenerative Tauopathies? [J]. Oxid Med Cell Longev, 2015, 2015: 151979
[42] Cai R, Zhang Y, Simmering JE, et al. Enhancing glycolysis attenuates Parkinson's disease progression in models and clinical databases [J]. J Clin Invest, 2019, 129(10): 4539-4549
[43] Veeresh P, Kaur H, Sarmah D, et al. Endoplasmic reticulum-mitochondria crosstalk: from junction to function across neurological disorders [J]. Ann N Y Acad Sci, 2019, doi: 10.1111/nyas.14212
[44] Neagu M, Constantin C, Popescu ID, et al. Inflammation and Metabolism in Cancer Cell- Mitochondria Key Player [J]. Front Oncol, 2019, 9: 348
[45] Oronsky BT, Oronsky N, Fanger GR, et al. Follow the ATP: tumor energy production: a perspective [J]. Anticancer Agents Med Chem, 2014, 14(9): 1187-1198
[46] Aksentijevi? D, McAndrew DJ, Karlstädt A, et al. Cardiac dysfunction and peri-weaning mortality in malonyl-coenzyme A decarboxylase (MCD) knockout mice as a consequence of restricting substrate plasticity [J]. J Mol Cell Cardiol, 2014, 75: 76-87
[47] Kozlov AV, Lancaster JR Jr, Meszaros AT, et al. Mitochondria-meditated pathways of organ failure upon inflammation [J]. Redox Biol, 2017, 13: 170-181
[48] Kozlov AV, Duvigneau JC, Miller I, et al. Endotoxin causes functional endoplasmic reticulum failure, possibly mediated by mitochondria [J]. Biochim Biophys Acta, 2009, 1792(6): 521-530
[49] 关丫丫, 梁银明, 王辉, 等. 三磷腺苷合酶抑制因子1基因敲除对小鼠成纤维细胞中三磷腺苷水平及脂肪细胞分化的影响 [J]. 新乡医学院学报(Guan YY, Liang YM, Wang H, et al. Effect of adenosine triphosphate synthase inhibitory factor 1 gene knockout on ATP level and differ-entiation of adipocytes in fibroblasts of mice[J]. J Xinxiang Med Univ), 2018, 35(8): 658-661
[50] 于晓晴, 钟根深, 熊熙文, 等. 三磷腺苷合酶抑制因子1基因敲除对小鼠巨噬细胞线粒体功能和三磷腺苷水平的影响 [J]. 新乡医学院学报(Yu XQ, Zhong GS, Xiong XW, et al. Effects of adenosine triphosphate synthase inhibitor 1 gene knockout on the levels of adenosinetriphosphate and mitochondrial function in mouse macrophages[J]. J Xinxiang Med Univ), 2019, 36(6): 501-505
|