Bcl-2/Beclin-1复合体在自噬中的调节作用

叶挺 邵增务

中国生物化学与分子生物学报 ›› 2013, Vol. 29 ›› Issue (6) : 513-519.

PDF(542 KB)
PDF(542 KB)
中国生物化学与分子生物学报 ›› 2013, Vol. 29 ›› Issue (6) : 513-519.
综述

Bcl-2/Beclin-1复合体在自噬中的调节作用

  • 叶挺,邵增务*
作者信息 +

The Function of Bcl-2/Beclin-1 Complex in Autophagy Regulation

  • YE Ting, SHAO Zeng-Wu*
Author information +
文章历史 +

摘要

自噬(autophagy)是一种进化保守的溶酶体依赖性分解代谢途径,是细胞维持自稳态的重要机制之一,并参与多种疾病的发生. Beclin-1作为自噬体成核的关键分子之一,是1个调节自噬的关键靶点. Beclin-1有1个BH3结构域,Bcl-2、Bcl-XL等可以通过这个BH3结构域与Beclin-1结合而影响其活性. 抗凋亡Bcl-2家族蛋白和Beclin-1的表达水平、磷酸化、分子的亚细胞定位以及BH3-only蛋白等,均可调节Beclin-1蛋白和Bcl-2家族蛋白结合水平,进而调控自噬的发生,并可能对细胞最终走向自噬还是凋亡起着关键作用.

Abstract

Autophagy is an evolutionarily conserved lysosomedependent catabolic mechanism to maintain cell homeostasis. The defect of autophagy was lined to the pathogenesis of many diseases. Beclin-1 is a key factor in the regulation of macroautophagy for its function to recruit key autophagy proteins in the forms of Beclin-1 containing core complex with Vps34, and Vps15. As a BH3-only Bcl-2 family protein, Beclin-1 is regulated by Bcl-2 family proteins through its BH3 domain. The expression levels, phosphorylation, subcellular localizaon of Beclin-1 and other Bcl-2 family antiapoptotic proteins, as well as other BH3-only proteins were known to regulate the Beclin-1 functions. Thus, Beclin-1 could be serving as a switching factor to determine whether the cells undergo autophagy or apoptosis.

关键词

自噬 / Beclin-1 / Bcl-2家族 / BH3结构域

Key words

autophagy / Beclin-1 / Bcl-2 family / BH3 domain

引用本文

导出引用
叶挺 邵增务. Bcl-2/Beclin-1复合体在自噬中的调节作用[J]. 中国生物化学与分子生物学报, 2013, 29(6): 513-519
YE Ting, SHAO Zeng-Wu. The Function of Bcl-2/Beclin-1 Complex in Autophagy Regulation[J]. Chinese Journal of Biochemistry and Molecular Biology, 2013, 29(6): 513-519
中图分类号: R34   

参考文献

[1] Levine B, Kroemer G. Autophagy in the pathogenesis of disease[J]. Cell,2008,132(1):27-42
[2] Mizushima N,Levine B,Cuervo A M,et al. Autophagy fights disease through cellular self- digestion[J]. Nature,2008,451(7182):1069-1075
[3] Klionsky D J. The molecular machinery of autophagy: unanswered questions[J]. J Cell Sci, 2005, 118 (Pt 1):7-18
[4]Kunz J B,Schwarz H,Mayer A.Determination of four sequential stages during microautophagy in vitro[J]. J Biol Chem,2004,279(11):9987-9996
[5]Orenstein S J, Cuervo A M. Chaperone-mediated autophagy: molecular mechanisms and physiological relevance[J]. Semin Cell Dev Biol,2010,21(7):719-726
[6]Kvam E, Goldfarb D S. Nucleus-vacuole junctions and piecemeal microautophagy of the nucleus in S. cerevisiae[J]. Autophagy,2007,3(2):85-92
[7] Hansen T E, Johansen T. Following autophagy step by step[J]. BMC Biol,2011,9:39
[8]Simonsen A, Tooze S A. Coordination of membrane events during autophagy by multiple class III PI3-kinase complexes[J]. J Cell Biol,2009,186(6):773-782
[9] Huang W P, Klionsky D J. Autophagy in yeast: a review of the molecular machinery[J]. Cell Struct Funct,2002,27(6):409-420
[10] Kametaka S, Okano T, Ohsumi M, et al. Apg14p and Apg6/Vps30p form a protein complex essential for autophagy in the yeast, Saccharomyces cerevisiae[J].J Biol Chem,1998,273(35): 22284-22291
[11] Liang C, Feng P, Ku B, et al. Autophagic and tumour suppressor activity of a novel Beclin1- binding protein UVRAG[J]. Nat Cell Biol,2006,8(7):688-699
[12] Fimia G M, Stoykova A, Romagnoli A, et al. Ambra1 regulates autophagy and development of the nervous system[J]. Nature,2007,447(7148):1121-1125
[13] Takahashi Y, Coppola D, Matsushita N, et al. Bif-1 interacts with Beclin 1 through UVRAG and regulates autophagy and tumorigenesis[J]. Nat Cell Biol,2007,9(10):1142-1151
[14] Pattingre S, Tassa A, Qu X, et al. Bcl-2 antiapoptotic proteins inhibit Beclin 1-dependent autophagy[J]. Cell,2005,122(6):927-939
[15] Erlich S, Mizrachy L, Segev O, et al. Differential interactions between Beclin 1 and Bcl-2 family members[J]. Autophagy,2007,3(6):561-568
[16] Maiuri M C, Le Toumelin G, Criollo A, et al. Functional and physical interaction between Bcl- X(L) and a BH3-like domain in Beclin-1[J]. EMBO J,2007,26(10):2527-2539
[17] Liang X H, Jackson S, Seaman M, et al. Induction of autophagy and inhibition of tumorigenesis by beclin 1[J]. Nature,1999,402(6762):672-676
[18] Pepper C, Bentley P. The role of the Bcl-2 family in the modulation of apoptosis[J]. Symp Soc Exp Biol,2000,52:43-53
[19]Galonek H L,Hardwick J M. Upgrading the BcL-2 network[J].Nat Cell Biol,2006,8(12): 1317-1319
[20] Adams J M, Cory S. The Bcl-2 apoptotic switch in cancer development and therapy[J]. Oncogene,2007,26(9):1324-1337
[21] Danial N N, Korsmeyer S J. Cell death: critical control points[J]. Cell,2004,116(2):205-219
[22] Liang X H, Kleeman L K, Jiang H H, et al. Protection against fatal Sindbis virus encephalitis by beclin, a novel Bcl-2-interacting protein[J]. J Virol,1998,72(11):8586-8596
[23]Furuya N, Yu J, Byfield M, et al. The evolutionarily conserved domain of Beclin 1 is required for Vps34 binding, autophagy and tumor suppressor function[J].Autophagy,2005,1 (1):46-52
[24] Criollo A, Maiuri M C, Tasdemir E, et al. Regulation of autophagy by the inositol trisphosphate receptor[J]. Cell Death Differ,2007,14(5):1029-1039
[25] Oberstein A, Jeffrey P D, Shi Y. Crystal structure of the Bcl-XL-Beclin 1 peptide complex: Beclin 1 is a novel BH3-only protein[J]. J Biol Chem,2007,282(17):13123-13132
[26] Karnak D, Xu L. Chemosensitization of prostate cancer by modulating Bcl-2 family proteins[J]. Curr Drug Targets,2010,11(6):699-707
[27] Buchholz T A, Garg A K, Chakravarti N, et al. The nuclear transcription factor kappaB/bcl-2 pathway correlates with pathologic complete response to doxorubicin-based neoadjuvant chemotherapy in human breast cancer[J]. Clin Cancer Res,2005,11(23):8398-8402
[28] Akar U, Chaves-Reyez A, Barria M, et al. Silencing of Bcl-2 expression by small interfering RNA induces autophagic cell death in MCF-7 breast cancer cells[J].Autophagy,2008,4(5): 669-679
[29] Kondo Y, Kanzawa T, Sawaya R, et al. The role of autophagy in cancer development and response to therapy[J]. Nat Rev Cancer,2005,5(9):726-734
[30] Qu X, Yu J, Bhagat G, et al. Promotion of tumorigenesis by heterozygous disruption of the beclin-1 autophagy gene[J]. J Clin Invest,2003,112(12):1809-1820
[31] Liang X H, Jackson S, Seaman M, et al. Induction of autophagy and inhibition of tumorigenesis by beclin-1[J]. Nature,1999,402(6762):672-676
[32] Copetti T, Bertoli C, Dalla E, et al. p65/RelA modulates BECN1 transcription and autophagy[J]. Mol Cell Biol,2009,29(10):2594-2608
[33] Wang B, Ling S, Lin W C. 14-3-3Tau regulates Beclin 1 and is required for autophagy[J]. PLoS One,2010,5(4):e10409
[34] Zhu H, Wu H, Liu X, et al. Regulation of autophagy by a beclin 1-targeted microRNA, miR- 30a, in cancer cells[J]. Autophagy,2009,5(6):816-823
[35] Chang B S, Minn A J, Muchmore S W, et al. Identification of a novel regulatory domain in Bcl-X(L) and Bcl-2[J]. EMBO J,1997,16(5):968-977
[36] Haldar S, Basu A, Croce C M. Serine-70 is one of the critical sites for drug-induced Bcl2 phosphorylation in cancer cells[J]. Cancer Res,1998,58(8):1609-1615
[37] Srivastava R K, Mi Q S, Hardwick J M, et al. Deletion of the loop region of Bcl-2 completely blocks paclitaxel-induced apoptosis[J]. Proc Natl Acad Sci U S A,1999,96(7):3775-3780
[38]Yamamoto K, Ichijo H, Korsmeyer S J. BCL-2 is phosphorylated and inactivated by an ASK1/Jun N-terminal protein kinase pathway normally activated at G(2)/M[J]. Mol Cell Biol,1999,19(12):8469-8478
[39] Blagosklonny M V. Unwinding the loop of Bcl-2 phosphorylation[J]. Leukemia,2001,15(6): 869-874
[40] Wei Y, Pattingre S, Sinha S, et al. JNK1-mediated phosphorylation of Bcl-2 regulates starvation-induced autophagy[J]. Mol Cell,2008,30(6):678-688
[41] Bassik M C, Scorrano L, Oakes S A, et al. Phosphorylation of BcL-2 regulates ER Ca2+ homeostasis and apoptosis[J]. EMBO J,2004,23(5):1207-1216
[42] Maundrell K, Antonsson B, Magnenat E, et al. Bcl-2 undergoes phosphorylation by c-Jun N-terminal kinase/stress-activated protein kinases in the presence of the constitutively active GTP-binding protein Rac1[J]. J Biol Chem,1997,272(40):25238-25242
[43] De Chiara G, Marcocci M E, Torcia M, et al. Bcl-2 Phosphorylation by p38 MAPK: identification of target sites and biologic consequences [J].J Biol Chem,2006,281(30):21353- 21361
[44] Raciti M, Lotti L V, Valia S, et al. JNK2 is activated during ER stress and promotes cell survival[J]. Cell Death Dis,2012,3:e429
[45]Kim D S,Kim J H,Lee G H,et al. p38 Mitogen-activated protein kinase is involved in endoplasmic reticulum stress-induced cell death and autophagy in human gingival fibroblasts [J]. Biol Pharm Bull,2010,33(4):545-549
[46] Zalckvar E, Berissi H, Mizrachy L, et al. DAP-kinase-mediated phosphorylation on the BH3 domain of beclin 1 promotes dissociation of beclin 1 from Bcl-XL and induction of autophagy [J]. EMBO Rep,2009,10(3):285-292
[47] Wang R C, Wei Y, An Z, et al. Akt-mediated regulation of autophagy and tumorigenesis through Beclin 1 phosphorylation[J]. Science,2012,338(6109):956-959
[48] Shi C S, Kehrl J H. TRAF6 and A20 regulate lysine 63-linked ubiquitination of Beclin-1 to control TLR4-induced autophagy[J]. Sci Signal,2010,3(123):ra42
[49]Oltersdorf T,Elmore S W, Shoemaker A R, et al. An inhibitor of Bcl-2 family proteins induces regression of solid tumours[J]. Nature,2005,435(7042):677-681
[50] Conradt B, Horvitz H R. The C. elegans protein EGL-1 is required for programmed cell death and interacts with the Bcl-2-like protein CED-9[J]. Cell,1998,93(4):519-529
[51] Conradt B, Horvitz H R. The TRA-1A sex determination protein of C. elegans regulates sexually dimorphic cell deaths by repressing the egl-1 cell death activator gene[J]. Cell,1999, 98(3):317-327
[52] Melendez A, Talloczy Z, Seaman M, et al. Autophagy genes are essential for dauer development and life-span extension in C. elegans[J]. Science,2003,301(5638):1387-1391
[53] Sarkar S, Floto R A, Berger Z, et al. Lithium induces autophagy by inhibiting inositol monophosphatase[J]. J Cell Biol,2005,170(7):1101-1111
[54] Luo S, Rubinsztein D C. BCL2L11/BIM: A novel molecular link between autophagy and apoptosis[J]. Autophagy,2013,9(1):104-105
[55] Luo S, Garcia-Arencibia M, Zhao R, et al. Bim inhibits autophagy by recruiting Beclin 1 to microtubules[J]. Mol Cell,2012,47(3):359-370
[56] Levine B, Sinha S, Kroemer G. Bcl-2 family members: dual regulators of apoptosis and autophagy[J]. Autophagy,2008,4(5):600-606
[57] Wirawan E, Vande Walle L, Kersse K, et al. Caspase-mediated cleavage of Beclin-1 inactivates Beclin-1-induced autophagy and enhances apoptosis by promoting the release of proapoptotic factors from mitochondria[J]. Cell Death Dis,2010,1:e18
[58]Boya P,Gonzalez-Polo R A,Casares N,et al.Inhibition of macroautophagy triggers apoptosis[J]. Mol Cell Biol,2005,25(3):1025-1040
[59]Gonzalez-Polo R A, Boya P, Pauleau A L, et al. The apoptosis/autophagy paradox: autophagic vacuolization before apoptotic death[J]. J Cell Sci,2005,118(Pt 14):3091-3102
[60] Criollo A, Vicencio J M, Tasdemir E, et al. The inositol trisphosphate receptor in the control of autophagy[J]. Autophagy,2007,3(4):350-353
[61] Kroemer G, Galluzzi L, Brenner C. Mitochondrial membrane permeabilization in cell death [J]. Physiol Rev,2007,87(1):99-163
[62] Wei M C, Zong W X, Cheng E H, et al. Proapoptotic BAX and BAK: a requisite gateway to mitochondrial dysfunction and death[J]. Science,2001,292(5517):727-730
[63] Pagliari L J, Kuwana T, Bonzon C, et al. The multidomain proapoptotic molecules Bax and Bak are directly activated by heat[J]. Proc Natl Acad Sci U S A,2005,102(50):17975-17980
[64] Zhu W, Cowie A, Wasfy G W, et al. Bcl-2 mutants with restricted subcellular location reveal spatially distinct pathways for apoptosis in different cell types[J]. EMBO J,1996,15(16): 4130- 4141
PDF(542 KB)

1603

Accesses

0

Citation

Detail

段落导航
相关文章

/