海刺参(Stichopus japonicus)电压依赖性钙离子通道
β亚基基因及其编码产物的结构特点学分析

杨冠科;丛丽娜;谢三群;张宗申;朱蓓薇

中国生物化学与分子生物学报 ›› 2009, Vol. 25 ›› Issue (02) : 137-145.

PDF(527 KB)
PDF(527 KB)
中国生物化学与分子生物学报 ›› 2009, Vol. 25 ›› Issue (02) : 137-145.
研究论文

海刺参(Stichopus japonicus)电压依赖性钙离子通道
β亚基基因及其编码产物的结构特点学分析

  • 杨冠科;丛丽娜*;谢三群;张宗申;朱蓓薇*
作者信息 +

Characterization and Structure Analysis of a Gene Encoding Voltagedependent Calcium Channel β Subunit from Sea Cucumber Stichopus japonicus

  • YANG Guan-Ke;CONG Li-Na*;XIE San-Qun;ZHANG Zong-Shen;ZHU Bei-
    Wei*

Author information +
文章历史 +

摘要

电压依赖性钙离子通道(voltagedependent calcium channels, VDCC)是细胞膜上
控制Ca2+进入胞内的特殊蛋白质,VDCC β亚基具有调节其通道活性的作用.使用
RT-PCR 和 RACE-PCR技术,从海刺参(Stichopus japonicus)肠中克隆得到电压依赖性钙离子通道β亚基(SjCaβ)基因,所得序列提交GenBank,登录号EU853658.该基因全长1 867 bp,包含1个1 614 bp的开放阅读框(ORF),编码537个氨基酸.将SjCaβ与多种无脊椎动物钙离子通道β亚基进行分析比较,发现它们有较高的同源性,并具有钙离子通道β亚基基因内保守的2个功能区域,即SH3功能区(src-homology 3 domain)和GK功能区(guanylate kinase domain).在功能区域附近还具有电压依赖性钙离子通道β亚基特有的BID区(β interaction domain),氨基酸保守序列为PYDVVP-RP---VGPSLKGYEVTDMMQKALFDF,进一步确定了得到的cDNA序列为海刺参电压依赖性钙离子通道β亚基.对SjCaβ的二级结构进行了预测,构建了系统进化发育树,并运用同源建模法构建了SjCaβ的三维结构模型.研究结果对深入研究海刺参离子通道的结构以及在信号传导过程中的作用有着重要意义,并为研究海刺参自溶等问题提供一定的理论基础.

Abstract

Voltagedependent calcium channels(VDCC)are special proteins that are located in the plasma membrane of virtually all types of excitable cells and serve to control the cellular Ca2+ influx. The β subunit of VDCC is known to
modulate the channel activities. The cDNA of VDCC β subunit from the intestine of sea cucumber Stichopus japonicus(SjCaβ)was cloned by RT-PCR and RACE. The full length cDNA of SjCaβ (GenBank accession No. EU853658) was determined to be
1 867 bp with a open reading frame of 1 614 bp, encoding 537 amino acid residues. The phylogenetic analysis of SjCaβ showed its significant homology with the β subunit of calcium channels from other known invertebrates containing a highly conserved BID domain (β interaction domain), a src-homology 3 domain and aguanylate kinase domain. The secondary structure of SjCaβ was predicted, and its three-dimensional molecular structure was generated by homologous modeling. These results are useful resources to expand the understanding of VDCC in Stichopus japonicus and may be used in future studies to elucidate its connection to the autolysis problem in sea cucumber productions.

关键词

海刺参 / 电压依赖性钙离子通道 / β亚基 / RT-PCR / 结构分析

Key words

Stichopus japonicus / voltage-dependent calcium channel / β subunit / RT-PCR / structure modeling

引用本文

导出引用
杨冠科;丛丽娜;谢三群;张宗申;朱蓓薇. 海刺参(Stichopus japonicus)电压依赖性钙离子通道
β亚基基因及其编码产物的结构特点学分析[J]. 中国生物化学与分子生物学报, 2009, 25(02): 137-145
YANGGuan-Ke;CONGLi-Na;XIESan-Qun;ZHANGZong-Shen;ZHUBei-Wei.

Characterization and Structure Analysis of a Gene Encoding Voltagedependent Calcium Channel β Subunit from Sea Cucumber Stichopus japonicus

[J]. Chinese Journal of Biochemistry and Molecular Biology, 2009, 25(02): 137-145
中图分类号: Q71   

参考文献

[1]Jones S W. Overview of voltage-dependent calcium channels[J]. J Bioenerg Biomembr, 1998, 30(4): 299-312
[2]Birnbaumer L, Qin N, Olcese R, et al. Structures and functions of calcium channel β subunits[J]. J Bioenerg Biomembr, 1998, 30(4): 357-375
[3]De Waard M, Pragnell M, Campbell K P. Ca2+ channel regulation by a conserved β subunit domain[J]. Neuron, 1994, 13(2): 495-503
[4]De Waard M, Scott V E S, Pragnell M, et al. Identification of critical amino acids involved in α1-β interaction in voltage-dependent Ca2+ channels[J]. FEBS Lett, 1996, 380(3): 272-276
[5]Meir A, Bell D C, Stephens G J, et al. Calcium channel β subunit promotes voltage-dependent modulation of α1B by G βγ[J]. Biophys J, 2000, 79(2): 731-746
[6]Lacerda A E, Kim H S, Ruth P, et al. Normalization of current kinetics by interaction between the α1 and β subunits of the skeletal muscle dihydropyridine-sensitive Ca2+ channel[J]. Nature, 1991, 352(6335): 527-530
[7]Chien A J, Zhao X, Shirokov R E, et al. Roles of a membrane-localized β subunit in the formation and targeting of functional L-type Ca2+ channels [J]. J Biol Chem, 1995, 270(50): 30036-30044
[8]Brice N L, Berrow N S, Campbell V, et al. Importance of the different β subunits in the membrane expression of the α1A and α2 calcium channel subunits: studies using a depolarization-sensitive α1A antibody[J]. Eur J Neurosci, 1997, 9(4): 749-759
[9]Fletcher C F, Copeland N G, Jenkins N A. Genetic analysis of voltage-dependent calcium channels[J]. J Bioenerg Biomembr, 1998, 30(4): 387-398
[10]Opatowsky Y, Chomsky-Hecht O, Kang M G, et al. The voltage-dependent calcium channel β subunit contains two stable interacting domains[J]. J Biol Chem, 2003, 278(52): 52323-52332
[11]Hanlon M R, Berrow N S, Dolphin A C, et al. Modeling of a voltage-dependent Ca2+ channel β subunit as a basis for understanding its functional properties[J]. FEBS Lett, 1999, 445(2-3): 366-370
[12]Kohn A B, Anderson P A V, Roberts-Misterly J M, et al. Schistosome calcium channel beta subunits: unusual modulatory effects and potential role in the action of the antischistosomal drug praziquantel[J]. J Biol Chem, 2001, 276(40): 36873-36876
[13]Kimura T, Kubo T. Cloning and functional characterization of squid voltage-dependent Ca2+ channel β subunits: involvement of N-terminal sequences in differential modulation of the current[J]. Neurosci Res, 2003, 46(1): 105-117
[14]Fan W, Li C, Wang X, et al. Cloning, characterization and expression analysis of calcium channel β subunit from pearl oyster (Pinctada fucata)[J]. J Biosci Bioeng, 2007, 104(1): 47-54
[15]杨西建, 丛丽娜, 路美玲, 等. 海参i型溶菌酶基因及其编码产物的结构特点[J]. 中国生物化学与分子生物学报( Yang Xi-Jian , Cong Li-Na, Lu Mei-Ling, et al. Characterization and structure analysis of a gene encoding i-type lysozyme from sea cucumber Stichopus japonicus[J]. Chin J Biochem Mol Biol ), 2007, 23(7): 542-547
[16]Schwede T, Kopp J, Guex N, et al. SWISS-MODEL: an automated protein homology-modeling server[J]. Nucl Acids Res, 2003, 31(13): 3381-3385
[17]Arnold K, Bordoli L, Kopp J, et al. The SWISS-MODEL Workspace: A web-based environment for protein structure homology modeling[J]. Bioinformatics, 2006, 22 (2): 195-201
[18]Walker D, De Waard M. Subunit interaction sites in voltage-dependent Ca2+ channels:role in channel function[J]. Trends Neurosci, 1998, 21(4): 148-154
[19]Kishimoto A, Nishiyama K, Nakanishi H, et al. Studies on the phosphorylation of myelin basic protein by protein kinase C and adenosine 3′:5′-monophosphate-dependent protein kinase[J]. J Biol Chem, 1985, 260(23): 12492-12499
[20]Woodgett J R, Gould K L, Hunter T. Substrate specificity of protein kinase C:use of synthetic peptides corresponding to physiological sites as probes for substrate recognition requirements[J]. Eur J Biochem, 1986, 161(1): 177-184
[21]Kuenzel E A, Mulligan J A, Sommercorn J, et al. Substrate specificity determinants for casein kinase Ⅱ as deduced from studies with synthetic peptides[J]. J Biol Chem, 1987, 262(19): 9136-9140
[22]Marin O, Meggio F, Marchiori F, et al. Site specificity of casein kinase-2 (TS) from rat liver cytosol: A study with model peptide substrates[J].Eur J Biochem, 1986, 160(2): 239-244
[23]Edelman A M, Blumenthal D K, Krebs E G. Protein serine/threonine kinase[J]. Annu Rev Biochem, 1987, 56: 567-613
[24]Gerhardstein B L, Puri T S, Chien A J, et al. Identification of the sites phosphorylated by cyclic AMP-dependent protein kinase on the β2 subunit of L-type voltage-dependent calcium channels[J]. Biochemistry, 1999, 38(32): 10361-10370
[25]Jarvis S E, Zamponi G W. Masters or slaves? Vesicle release machinery and the regulation of presynaptic calcium channels[J]. Cell Calcium, 2005, 37(5): 483-488
[26]Dolphin A C. G protein modulation of voltage-gated calcium channels[J]. Pharmacol Rev, 2003, 55(4): 607-627
[27]Musacchio A, Wilmanns M, Saraste M. Structure and function of the SH3 domain[J]. Prog Biophys Mol Biol, 1994, 61(3): 283-297
[28]Morton C J, Campbell I D. SH3 Domains: Molecular ‘Velcro’ [J]. Curr Biol, 1994, 4(7): 615-617
PDF(527 KB)

97

Accesses

0

Citation

Detail

段落导航
相关文章

/