糖组学研究策略及前沿技术研究进展
Glycomics, an emerging field of life science
糖组学是继基因组学和蛋白质组学后的新兴研究领域,主要研究聚糖结构与功能.通过与蛋白质组数据库结合,糖捕捉法能系统鉴定糖蛋白和糖基化位点.糖微阵列技术可以对生物个体产生的全部蛋白聚糖结构进行鉴定与表征,提高了聚糖分析通量.而化学选择糖印迹技术简化了聚糖纯化步骤并提高了糖基化分析的灵敏度.双消化并串联柱法通过双酶消化双柱分离,在分析聚糖结构的同时也鉴定蛋白质的序列,并与蛋白质组学研究兼容.
Glycomics is an emerging field of life science that proposed as a new concept to follow genomics and proteomics, which focus on glycan structures and function. Glyco-catch method could identify the glcoprotein and glycosylation sites via combination with protomic database. Carbohydrate microarray could identify and characterize whole glycoprotein structures of intact cells, which is highthroughput technology for glycan analysis. Chemoselective glycoblotting simplifies purifying process of glycan and increases the sensitivity of glycosylation assay. Two-step proteolytic digestion combined with sequential microcolumns technology takes advantage of sequential specific and nonspecific enzymatic treatment followed by selective purification and characterization of the glycopeptide, which is compatible with proteomic studies.
糖组 / 糖组学 / 糖捕捉法 / 微阵列技术 {{custom_keyword}} /
Glycome / Glycomics / Glyco-catch / Microarray {{custom_keyword}} /
[1] Apweiler R, Hermjakob H, Sharon N. On the frequency of protein glycosylation, as deduced from analysis of the SWISS-PROT database[J]. Biochim Biophys Acta, 1999, 1473(1): 4-8
[2] Feizi T. Progress in deciphering the information content of the glycomea crescendo in the closing years of the millennium[J]. Glycoconj J, 2000, 17(7-9): 553-565
[3]Zanetta J P, Badache A, Maschke S, Marschal, P, Kuchler S. Carbohydrates and soluble lectins in the regulation of cell adhesion and proliferation[J]. Histol Histopathol, 1994, 9(2): 385-412
[4] Huby R D, Dearman R J, Kimber I. Why are some proteins allergens[J]? Toxicol Sci, 2000, 55(2): 235-246
[5] Bertozzi C R, Kiessling L L. Chemical glycobiology[J]. Science, 2001, 291(5512): 2357-2364
[6] Hirabayashi J, Kasai K. Glycomics, coming of age! genome, proteome, and glycome[J]. Trends Glycosci Glycotechnol, 2000, 12: 1~5
[7] Laine R A. A calculation of all possible oligosaccharide isomers both branched and linear yields 105×1012 structures for a reducing hexasaccharide: the Isomer Barrier to development of singlemethod saccharide sequencing or synthesis system[J]. Glycobiology, 1994, 4(6): 759~767
[8] Hirabayashi J, Kasai K. Separation technologies for glycomics[J]. J Chromatogr B Analyt Technol Biomed Life Sci,2002, 771(1-2): 67~87
[9] Hirabayashi J, Kaji H, Isobe T, Kasai K. Affinity capturing and gene assignment of soluble glycoproteins produced by the nematode Caenorhabditis elegans[J]. J Biochem (Tokyo), 2002, 132(1): 103~114
[10] Wang D, Liu S, Trummer B J, Deng C, Wang A. Carbohydrate microarrays for the recognition of crossreactive molecular markers of microbes and host cells[J]. Nat Biotechnol, 2002, 20(3): 275~281
[11] Pilobello K T, Krishnamoorthy L, Slawek D ,Mahal L K. Development of a lectin microarray for the rapid analysis of protein glycopatterns[J]. Chembiochem, 2005, 6(6): 985-989
[12] Kuno A, Uchiyama N, KosekiKuno S, Ebe Y, Takashima S,Yamada M, Hirabayashi J. Evanescentfield fluorescenceassisted lectin microarray: a new strategy for glycan profiling[J]. Nat Methods, 2005, 2(11): 851-856
[13] Xia B, Kawar Z S, Ju T, Alvarez R A, Sachdev G, Cummings R. Versatile fluorescent derivatization of glycans for glycomic analysis[J]. Nat Methods, 2005, 2(11): 845-850
[14] Nishimura SI, Niikura K, Kurogochi M, Matsushita T, Fumoto M, Hinou H, Kamitani R, Nakagawa H, Deguchi K, Miura N, Monde K, Kondo H. Highthroughput protein glycomics: combined use of chemoselective glycoblotting and MALDITOF/TOF mass spectrometry[J]. Angew Chem (Int Ed Engl), 2004, 44(1): 91-96
[15] Uematsu R, Furukawa J, Nakagawa H, Shinohara Y, Deguchi K, Monde K, Nishimura SI. High throughput quantitative glycomics and glycoformfocused proteomics of murine dermis and epidermis[J]. Mol Cell Proteomic, 2005, 4(12): 1977-1989
[16] An H J, Peavy T R, Hedrick J L, Lebrilla C B. Determination of Nglycosylation sites and site heterogeneity in glycoproteins[J]. Anal Chem, 2003, 75(20): 5628-5637
[17] Larsen M R, Hjrup P, Roepstorff P. Characterization of gelseparated glycoproteins using twostep proteolytic digestion combined with sequential microcolumns and mass spectrometry[J]. Mol Cell Proteomic, 2005, 4(2): 107-119
[18] Hirabayashi J, Arata Y, Kasai K. Glycome project: Concept, strategy and preliminary application to Caenorhabditis elegans[J]. Proteomics, 2001, 1(2): 295-303
[19] David J. Matrixassisted laser desorption/ionization mass spectrometry of carbohydrates and glycoconjugates[J]. Int J Mass Spectrom, 2003, 226(1): 1-35
[20] Comisarow M B, Marshall A G. Fourier transform ion cyclotron resonance spectroscopy[J]. Chem Phys Lett, 1974, 25(2): 282-283
[21] Dell A, Morris H R. Glycoprotein structure determination by mass spectrometry[J]. Science, 2001, 291(5512): 2351-2356
[22] Kasai K, Oda Y, Nishikawa M, Ishii S. Frontal affinity chromatography: theory, for its application to studies on specific interaction of biomolecules[J]. J Chromatogr, 1986, 376: 33~47
[23] Schriemer D C, Bundle D R, Li L, Hindsgaul O. Microscale frontal affinity chromatography with mass spectrometric detection: a new method for the screening of compound libraries[J]. Angew Chem (Int Ed Engl), 1998, 37: 3383~3387
/
〈 | 〉 |