Transformation Models for Characterization of Cancer Driver Genes

ZHANG Xue-Hong, DENG Da-Jun

Chinese Journal of Biochemistry and Molecular Biology ›› 2021, Vol. 37 ›› Issue (5) : 573-579.

PDF(1008 KB)
PDF(1008 KB)
Chinese Journal of Biochemistry and Molecular Biology ›› 2021, Vol. 37 ›› Issue (5) : 573-579.
Reviews

Transformation Models for Characterization of Cancer Driver Genes

  • ZHANG Xue-Hong, DENG Da-Jun*
Author information +
History +

Abstract

The development of cancer is a complex process. Although many genetic and epigenetic alterations are detected in cancer cells, only small proportion of these alterations may function as cancer drivers. Because it is difficult to directly characterize driver factors in human body, alternative research models have continuously been developed. In the early stage from 1915 to 1980s, genetic activation of proto-oncogenes and inactivation of tumor suppressor genes were often characterized using various carcinogenicity tests, including animal tumor induction models, malignant transformation of normal human cells/tissues/organs cultured in vitro or transplanted into immuno-defected mice. Since 1990 to now, gene transfection and knockout technologies were frequently used to characterize cancer driver genes. Currently,  2-dimensional (2D) or 3-dimensional (3D) cell culture and organoid are also employed to test carcinogenicity of environmental factors and driver genes. In this review, we summarized the main models of malignant transformation and their advantages and disadvantages.

Key words

driver gene / chemical carcinogenesis / genetically engineered mouse models(GEMMs) / malignancy / organoid

Cite this article

Download Citations
ZHANG Xue-Hong, DENG Da-Jun. Transformation Models for Characterization of Cancer Driver Genes[J]. Chinese Journal of Biochemistry and Molecular Biology, 2021, 37(5): 573-579

References

[1]  Tallen G, Riabowol K. Keep-ING balance: tumor suppression by epigenetic regulation[J]. FEBS Lett, 2014, 588(16): 2728-2742
[2]  Tomczak K, Czerwinska P, Wiznerowicz M. The Cancer Genome Atlas (TCGA): an immeasurable source of knowledge[J]. Contemp Oncol (Pozn), 2015, 19(1A): A68-77
[3]  Zhang Z, Li H, Jiang S , et al. A survey and evaluation of Web-based tools/databases for variant analysis of TCGA data[J]. Brief B ioinform, 2019, 20(4): 1524-1541
[4]  Vogelstein B, Papadopoulos N, Velculescu VE , et al. Cancer genome landscapes[J]. Science, 2013, 339 (6127): 1546-1558
[5]  Yamagiwa K. Experimentelle studie uber die pathogenese der epithelialgeschwulste[J]. Mitt Med Fad Tokio, 1915, 15: 295-344
[6]  Loeb LA, Harris CC. Advances in Chemical Carcinogenesis: A Historical Review and Prospective[J]. Cancer Res, 2008, 68(17): 6863-6872
[7]  Westcott PM, Halliwill KD, To MD , et al. The mutational landscapes of genetic and chemical models of Kras-driven lung cancer[J]. Nature, 2015, 517(7535): 489-492
[8]  McCreery MQ, Halliwill KD, Chin D , et al. Evolution of metastasis revealed by mutational landscapes of chemically induced skin cancers[J]. Nat Med, 2015, 21(12): 1514-1520
[9]  Connor F, Rayner TF, Aitken SJ , et al. Mutational landscape of a chemically-induced mouse model of liver cancer[J]. J Hepatol, 2018, 69(4): 840-850
[10]  May M. Cancer research with a human touch[J]. Nature, 2018, 556(7700): 259-261
[11]  Galuschka C, Proynova R, Roth B , et al. Models in Translational Oncology:  A Public Resource Database for Preclinical Cancer Research[J]. Cancer Res, 2017, 77(10): 2557-2563
[12]  de Ruiter JR, Wessels LFA, Jonkers J. Mouse models in the era of large human tumour sequencing studies [J]. Open Biol, 2018, 8(8): 1-16
[13]  Adams JM, Harris AW, Pinkert CA , et al. The c-myc oncogene driven by immunoglobulin enhancers induces lymphoid malignancy in transgenic mice[J]. Nature, 1985, 318(6046): 533-538
[14]  Sinn E, Muller W, Pattengale P , et al. Coexpression of MMTV/v-Ha-ras and MMTV/c-myc genes in transgenic mice: synergistic action of oncogenes in vivo[J]. Cell, 1987, 49(4): 465-475
[15]  Molyneux G, Geyer FC, Magnay FA, et al. BRCA1 basal-like breast cancers originate from luminal epithelial progenitors and not from basal stem cells[J]. Cell Stem Cell, 2010, 7(3): 403-417
[16]  Dow LE, Fisher J, O'Rourke KP , et al. Inducible in vivo genome editing with CRISPR-Cas9[J]. Nat Biotechnol, 2015, 33(4): 390-394
[17]  Beer PA, Eaves CJ. Modeling Normal and Disordered Human Hematopoiesis[J]. Trends Cancer, 2015, 1(3): 199-210
[18]  Fridman AL, Tainsky MA. Critical pathways in cellular senescence and immortalization revealed by gene expression profiling[J]. Oncogene, 2008, 27(46): 5975-5987
[19]  Coursen JD, Bennett WP, Gollahon L , et al. Genomic Instability and Telomerase Activity in Human Bronchial Epithelial Cells during Immortalization by Human Papillomavirus-16 E6 and E7 Genes[J]. Exp Cell Res, 1997, 235(1): 245-253
[20]  Reddel RR, Ke Y, Gerwin BI , et al. Transformation of Human Bronchial Epithelial Cells by Infection with SV40 or Adenovirus-12 SV40 Hybrid Virus, or Transfection via Strontium Phosphate Coprecipitation with a Plasmid Containing SV40 Early Region Genes[J]. Cancer Res, 1988, 48(7): 1904-1909
[21]  Garcia-Mesa Y, Jay TR, Checkley MA , et al. Immortalization of primary microglia: a new platform to study HIV regulation in the central nervous system[J]. J Neurovirol, 2017, 23(1): 47-66
[22]  Liu Y, Wang CH, Fan J , et al. Establishing a papillary craniopharyngioma cell line by SV40LT-mediated immortalization[J]. Pituitary, 2020. doi: 10.1007/s11102-020-01093-5
[23]  Tsai CC, Chen CL, Liu HC, et al. Overexpression of hTERT increases stem-like properties and decreases spontaneous differentiation in human mesenchymal stem cell lines[J]. J Biomed Sci, 2010, 17(1): 64
[24]  Beckenkamp LR, da Fontoura DMS, Korb VG, et al. Immortalization of Mesenchymal Stromal Cells by TERT Affects Adenosine Metabolism and Impairs their Immunosuppressive Capacity[J]. Stem Cell Rev Rep, 2020, 16(4): 776-791
[25]  Huang ZX, Mao XM, Lin DC, et al. Establishment and characterization of immortalized human eutopic endometrial stromal cells[J]. Am J Reprod Immunol, 2020, 83(3): e13213
[26]  De Filippis L, Ferrari D, Rota Nodari L, et al. Immortalization of human neural stem cells with the c-myc mutant T58A[J]. PLoS One, 2008, 3(10):e 3310
[27]  De Filippis L, Lamorte G, Snyder EY, et al. A novel, immortal, and multipotent human neural stem cell line generating functional neurons and oligodendrocytes[J]. Stem Cells, 2007, 25(9): 2312-2321
[28]  Toouli CD, Huschtscha LI, Neumann AA, et al. Comparison of human mammary epithelial cells immortalized by simian virus 40 T-Antigen or by the telomerase catalytic subunit[J]. Oncogene, 2002, 21(1): 128-139
[29]  Zhao Z, Fowle H, Valentine H, et al. Immortalization of human primary prostate epithelial cells via CRISPR inactivation of the CDKN2A locus and expression of telomerase[J]. Prostate Cancer Prostatic Dis, 2020. doi: 10.1038/s41391-020-00274-4
[30]  Nishiwaki M, Toyoda M, Oishi Y, et al. Immortalization of human hepatocytes from biliary atresia with CDK4R24C, cyclin D1, and TERT for cytochrome P450 induction testing[J]. Sci Rep, 2020, 10(1): 17503-
[31]  Lee KM, Nguyen C, Ulrich AB, et al. Immortalization with telomerase of the Nestin-positive cells of the human pancreas[J]. Biochem Biophys Res Commun, 2003, 301(4): 1038-1044
[32]  Chang Z, Ju H, Ling J, et al. Cooperativity of oncogenic K-ras and downregulated p16/INK4A in human pancreatic tumorigenesis[J]. PLoS One, 2014, 9(7): e101452
[33]  Ward TM, Iorns E, Liu X, et al. Truncated p110 ERBB2 induces mammary epithelial cell migration, invasion and orthotopic xenograft formation, and is associated with loss of phosphorylated STAT5[J]. Oncogene, 2013, 32(19): 2463-2474
[34]  Kavsan VM, Iershov AV, Balynska OV. Immortalized cells and one oncogene in malignant transformation:  old insights on new explanation[J]. BMC Cell Biol, 2011, 12:23
[35]  Goldstein AS, Huang J, Guo C, et al. Identification of a cell of origin for human prostate cancer[J]. Science, 2010, 329(5991): 568-571
[36]  Okada H, Tsubura A, Okamura A, et al. Keratin profiles in normal/hyperplastic prostates and prostate carcinoma[J]. Virchows Arch A Pathol Anat Histopathol, 1992, 421(2): 157-161
[37]  Parsons JK, Gage WR, Nelson WG, et al. p63 protein expression is rare in prostate adenocarcinoma:  implications for cancer diagnosis and carcinogenesis[J]. Urology, 2001, 58(4): 619-624
[38]  Lee JK, Phillips JW, Smith BA, et al. N-Myc Drives Neuroendocrine Prostate Cancer Initiated from Human Prostate Epithelial Cells[J]. Cancer Cell, 2016, 29(4): 536-547
[39]  Park JW, Lee JK, Sheu KM, et al. Reprogramming normal human epithelial tissues to a common, lethal neuroendocrine cancer lineage[J]. Science, 2018, 362(6410): 91-95
[40]  Proia TA, Keller PJ, Gupta PB, et al. Genetic predisposition directs breast cancer phenotype by dictating progenitor cell fate[J]. Cell Stem Cell, 2011, 8(2): 149-163
[41]  Nguyen LV, Pellacani D, Lefort S, et al. Barcoding reveals complex clonal dynamics of de novo transformed human mammary cells[J]. Nature, 2015, 528(7581): 267-271.
[42]  Balani S, Nguyen LV, Eaves CJ. Modeling the process of human tumorigenesis[J]. Nat Commun, 2017, 8: 15422
[43]  Li M, Izpisua Belmonte JC. Organoids - Preclinical Models of Human Disease[J]. N Engl J Med, 2019, 380(6): 569-579
[44]  Zhou J, Su J, Fu X, et al. Microfluidic device for primary tumor spheroid isolation[J]. Exp Hematol Oncol, 2017, 6:22.doi:10.1186/s 40164-40171-0084-3
[45]  Sato T, Vries RG, Snippert HJ, et al. Single Lgr5 stem cells build crypt-villus structures in vitro without a mesenchymal niche[J]. Nature, 2009, 459(7244): 262-265
[46]  Barker N, van Es JH, Kuipers J, et al. Identification of stem cells in small intestine and colon by marker gene Lgr5[J]. Nature, 2007, 449(7165): 1003-1007
[47]  de Lau W, Barker N, Low TY, et al. Lgr5 homologues associate with Wnt receptors and mediate R-spondin signalling[J]. Nature, 2011, 476(7360): 293-297
[48]  Matano M, Date S, Shimokawa M, et al. Modeling colorectal cancer using CRISPR-Cas9-mediated engineering of human intestinal organoids[J]. Nat Med, 2015, 21(3): 256-262
[49]  Fumagalli A, Drost J, Suijkerbuijk SJ, et al. Genetic dissection of colorectal cancer progression by orthotopic transplantation of engineered cancer organoids[J]. Proc Natl Acad Sci U S A, 2017, 114(12): E2357-E2364
[50]  Drost J, van Jaarsveld RH, Ponsioen B, et al. Sequential cancer mutations in cultured human intestinal stem cells[J]. Nature, 2015, 521(7550): 43-47
[51]  Dekkers JF, Whittle JR, Vaillant F, et al. Modeling breast cancer using CRISPR/Cas9-mediated engineering of human breast organoids[J]. J Natl Cancer Inst, 2020, 112(5): 540-544
[52]  Sun L, Wang Y, Cen J, et al. Modelling liver cancer initiation with organoids derived from directly reprogrammed human hepatocytes[J]. Nat Cell Biol, 2019, 21(8): 1015-1026
[53]  Seino T, Kawasaki S, Shimokawa M, et al. Human Pancreatic Tumor Organoids Reveal Loss of Stem Cell Niche Factor Dependence during Disease Progression[J]. Cell Stem Cell, 2018, 22(3): 454-467
[54]  Proia TA, Keller PJ, Gupta PB, et al. Genetic predisposition directs breast cancer phenotype by dictating progenitor cell fate[J]. Cell Stem Cell, 2011, 8(2): 149-163
[55]  Jabs J, Zickgraf FM, Park J, et al. Screening drug effects in patient-derived cancer cells links organoid responses to genome alterations[J]. Mol Syst Biol, 2017, 13(11): 955
[56]  Drost J, Karthaus WR, Gao D, et al. Organoid culture systems for prostate epithelial and cancer tissue[J]. Nat Protoc, 2016, 11(2): 347-358
[57]  Drost J, Clevers H. Organoids in cancer research[J]. Nat Rev Cancer, 2018, 18(7): 407-418

Funding

Beijing Natural Science Foundation (No. 7181002)
PDF(1008 KB)

Accesses

Citation

Detail

Sections
Recommended

/