The Roles of Small Rho GTPases in Cell Cycle Regulation

FAN Li-Fei, YAN Hui-Juan, Morigen*

Chinese Journal of Biochemistry and Molecular Biology ›› 2013, Vol. 29 ›› Issue (7) : 619-628.

PDF(876 KB)
PDF(876 KB)
Chinese Journal of Biochemistry and Molecular Biology ›› 2013, Vol. 29 ›› Issue (7) : 619-628.
Reviews

The Roles of Small Rho GTPases in Cell Cycle Regulation

  • FAN Li-Fei,  YAN Hui-Juan,  Morigen*
Author information +
History +

Abstract

The small Rho GTPases cycle between GDP-bound inactive forms and GTP-bound active form, and act as the molecular switches to regulate the processes of actin cytoskeleton dynamics, cell migration, cell motility, cell polarization, gene expression and control of cell cycles. The proliferation of eukaryotic cells is a tightly regulated process in which the cells sense both of intracellular and extracellular environments in each cell-cycle phases. Rho GTPases and their effectors are able to regulate the cell-cycle regulation at all of the G1, S, G2 and M phases, to mediate the G1/S transition, cell rounding at mitosis onset, chromosomal alignment and actomyosin ring contraction at the end of mitosis. Here, we summarized the current understanding about the roles of Rho GTPases in cell-cycle regulation focusing on specific members of the Rho family and their downstream effectors, such as cyclin D1, p21cip1 and p27kip1, in G1/S transition. We also discussed the connection between small Rho GTPases mediated cell-cycle regulation and cancers.

Key words

small Rho GTPases / cell-cycle regulation / cancer

Cite this article

Download Citations
FAN Li-Fei, YAN Hui-Juan, Morigen*. The Roles of Small Rho GTPases in Cell Cycle Regulation[J]. Chinese Journal of Biochemistry and Molecular Biology, 2013, 29(7): 619-628

References

[1]David M, Petit D, Bertoglio J. Cell cycle regulation of Rho signaling pathways [J]. Cell Cycle, 2012, 11(16): 3003-3010

[2]Vigil D, Cherfils J, Rossman KL, et al. Ras superfamily GEFs and GAPs: validated and tractable targets for cancer therapy? [J]. Nat Rev Cancer, 2010, 10(12): 842-857

[3]Mittnacht S, Paterson H, Olson MF, et al. Ras signalling is required for inactivation of the tumour suppressor pRb cell-cycle control protein [J]. Curr Biol, 1997, 7(3): 219-221

[4]Pruitt K, Der CJ. Ras and Rho regulation of the cell cycle and oncogenesis [J]. Cancer Lett, 2001, 171(1): 1-10

[5]Coleman ML, Marshall CJ, Olson MF. RAS and RHO GTPases in G1-phase cell-cycle regulation [J]. Nat Rev Mol Cell Biol, 2004, 5(5): 355-366

[6]Downward J. Ras signalling and apoptosis [J]. Curr Opin Genet Dev, 1998, 8(1): 49-54

[7]Gille H,Downward J.Multiple ras effector pathways contribute to G(1) cell cycle progression [J]. J Biol Chem, 1999, 274(31): 22033-22040

[8]Diehl JA, Cheng M, Roussel MF, et al. Glycogen synthase kinase-3beta regulates cyclin D1 proteolysis and subcellular localization [J]. Genes Dev, 1998, 12(22): 3499-3511

[9]Muise-Helmericks RC, Grimes HL, Bellacosa A, et al. Cyclin D expression is controlled post-transcriptionally via a phosphatidylinositol 3-kinase/Akt-dependent pathway [J]. J Biol Chem, 1998, 273(45): 29864-29872

[10]Delmas C, Manenti S, Boudjelal A, et al. The p42/p44 mitogen-activated protein kinase activation triggers p27Kip1 degradation independently of CDK2/cyclin E in NIH 3T3 cells [J]. J Biol Chem, 2001, 276(37): 34958-34965

[11]Rivard N, Boucher MJ, Asselin C, et al. MAP kinase cascade is required for p27 downregulation and S phase entry in fibroblasts and epithelial cells [J]. Am J Physiol, 1999, 277(4 Pt 1): C652-664

[12]Takuwa N, Takuwa Y. Ras activity late in G1 phase required for p27kip1 downregulation, passage through the restriction point, and entry into S phase in growth factor-stimulated NIH 3T3 fibroblasts [J]. Mol Cell Biol, 1997, 17(9): 5348-5358

[13]LaBaer J, Garrett MD, Stevenson LF,  et al. New functional activities for the p21 family of CDK inhibitors [J]. Genes Dev, 1997, 11(7): 847-862

[14]Cheng M, Olivier P, Diehl JA, et al. The p21 (Cip1) and p27(Kip1) CDK 'inhibitors' are essential activators of cyclin D-dependent kinases in murine fibroblasts [J]. Embo J, 1999, 18(6): 1571-1583

[15]Alt JR, Gladden AB, Diehl J A. p21 (Cip1) Promotes cyclin D1 nuclear accumulation via direct inhibition of nuclear export [J]. J Biol Chem, 2002, 277(10): 8517-8523

[16]Woods D, Parry D, Cherwinski H, et al., Raf-induced proliferation or cell cycle arrest is determined by the level of Raf activity with arrest mediated by p21Cip1 [J]. Mol Cell Biol, 1997, 17(9): 55985-55611

[17]Sewing A, Wiseman B, Lloyd AC, et al. High-intensity Raf signal causes cell cycle arrest mediated by p21Cip1 [J]. Mol Cell Biol, 1997, 17(9): 5588-5597

[18]Madaule P, Axel R.A novel ras-related gene family [J]. Cell, 1985, 41(1): 31-40

[19]Vega FM,Ridley AJ.Rho GTPases in cancer cell biology [J]. FEBS Lett, 2008, 582(14): 2093-2101

[20]Gu Y, Jasti AC, Jansen M, et al. RhoH, a hematopoietic-specific Rho GTPase, regulates proliferation, survival,migration and engraftment of hematopoietic progenitor cells[J].Blood,2005,105(4):1467-1475

[21]Gu Y, Zheng Y, Williams DA. RhoH GTPase: a key regulator of hematopoietic cell proliferation and apoptosis? [J]. Cell Cycle, 2005, 4(2): 201-202

[22]Rossman K L, Der CJ, Sondek J. GEF means go: turning on RHO GTPases with guanine nucleotide-exchange factors [J]. Nat Rev Mol Cell Biol, 2005, 6(2): 167-180

[23]Heasman SJ, Ridley AJ. Mammalian Rho GTPases: new insights into their functions from in vivo studies [J]. Nat Rev Mol Cell Biol, 2008, 9(9): 690-701

[24]Sherr C,Roberts JM.CDK inhibitors: positive and negative regulators of G1-phase progression [J]. Genes Dev, 1999, 13(12): 1501-1512

[25]Villalonga P, Ridley AJ. Rho GTPases and cell cycle control[J].Growth Factors, 2006, 24(3):159-164

[26]Ewen ME, Sluss HK, Sherr CJ, et al. Functional interactions of the retinoblastoma protein with mammalian D-type cyclins [J]. Cell, 1993, 73(3): 487-497

[27]Vlach J, Hennecke S, Amati,B. Phosphorylation-dependent degradation of the cyclin-dependent kinase inhibitor p27 [J]. EMBO J, 1997, 16(17): 5334-5344

[28]Dynlacht BD, Flores O, Lees JA, et al. Differential regulation of E2F transactivation by cyclin/cdk2 complexes [J]. Genes Dev, 1994, 8(15): 1772-1786

[29]Pardee AB. G1 events and regulation of cell proliferation [J]. Science, 1989, 246(4930): 603-608

[30]Yamamoto M, Marui N, Sakai T, et al. ADP-ribosylation of the rhoA gene product by botulinum C3 exoenzyme causes Swiss 3T3 cells to accumulate in the G1 phase of the cell cycle [J]. Oncogene, 1993, 8(6): 1449-1455

[31]Olson MF, Ashworth A, Hall A. An essential role for Rho, Rac, and Cdc42 GTPases in cell cycle progression through G1 [J]. Science, 1995, 269(5228): 1270-1272

[32]Vogt A, Sun J, Qian Y, et al. The geranylgeranyltransferase-I inhibitor GGTI-298 arrests human tumor cells in G0/G1 and induces p21(WAF1/CIP1/SDI1) in a p53-independent manner [J]. J Biol Chem, 1997, 272(43): 27224-27229

[33]Qiu RG, Chen J, Kirn D, et al. An essential role for Rac in Ras transformation [J]. Nature, 1995, 374 (6521): 457-459

[34]Qiu RG, Chen J, McCormick F, et al. A role for Rho in Ras transformation [J]. Proc Natl Acad Sci U S A, 1995, 92(25): 11781-11785

[35]Qiu RG, Abo A, McCormick F, et al. Cdc42 regulates anchorage-independent growth and is necessary for Ras transformation [J]. Mol Cell Biol, 1997, 17(6): 3449-3458

[36]Diehl JA. Cycling to cancer with cyclin D1 [J]. Cancer Biol Ther, 2002, 1(3): 226-231

[37]Croft DR, Olson M F.The Rho GTPase effector ROCK regulates cyclin A, cyclin D1, and p27Kip1 levels by distinct mechanisms [J]. Mol Cell Biol, 2006, 26(12): 4612-4627

[38]Welsh CF, Assoian RK. A growing role for Rho family GTPases as intermediaries in growth factor- and adhesion-dependent cell cycle progression [J]. Biochim Biophys Acta, 2000, 1471(1): M21-29

[39]Bourdoulous S, Orend G, MacKenna DA, et al. Fibronectin matrix regulates activation of RHO and CDC42 GTPases and cell cycle progression [J]. J Cell Biol, 1998, 143(1): 267-276

[40]Welsh CF, Roovers K, Villanueva J, et al. Timing of cyclin D1 expression within G1 phase is controlled by Rho [J]. Nat Cell Biol, 2001, 3(11): 950-957

[41]Mettouchi A, Klein S, Guo W ,et al. Integrin-specific activation of Rac controls progression through the G(1) phase of the cell cycle [J]. Mol Cell, 2001, 8(1): 115-127

[42]Joyce D, Bouzahzah B, Fu M, et al.Integration of Rac-dependent regulation of cyclin D1 transcription through a nuclear factor-kappaB-dependent pathway [J]. J Biol Chem, 1999, 274(36): 25245-25249

[43]Gjoerup O, Lukas J, Bartek J, et al. Rac and Cdc42 are potent stimulators of E2F-dependent transcription capable of promoting retinoblastoma susceptibility gene product hyperphosphorylation [J]. J Biol Chem, 1998, 273(30): 18812-18818

[44]Hu W, Bellone CJ, Baldassare J J. RhoA stimulates p27 (Kip) degradation through its regulation of cyclin E/CDK2 activity [J]. J Biol Chem, 1999, 274(6): 3396-3401

[45]Vidal A, Millard SS, Miller JP, et al. Rho activity can alter the translation of p27 mRNA and is important for RasV12-induced transformation in a manner dependent on p27 status [J]. J Biol Chem, 2002, 277(19): 16433-16440

[46]Olson MF, Paterson H F, Marshall CJ. Signals from Ras and Rho GTPases interact to regulate expression of p21Waf1/Cip1 [J]. Nature, 1998, 394(6690): 295-299

[47]Guasch RM, Scambler P, Jones GE, et al. RhoE regulates actin cytoskeleton organization and cell migration [J]. Mol Cell Biol, 1998, 18(8): 4761-4771

[48]Talens-Visconti R, Peris B, Guerri C,  et al. RhoE stimulates neurite-like outgrowth in PC12 cells through inhibition of the RhoA/ROCK-I signalling [J]. J Neurochem, 2010, 112(4): 1074-1087

[49]Riento K, Guasch RM, Garg R, et al. RhoE binds to ROCK I and inhibits downstream signaling [J]. Mol Cell Biol, 2003, 23(12): 4219-4229

[50]Riento K, Ridley A J.Inhibition of ROCK by RhoE [J]. Methods Enzymol, 2006, 406: 533-541

[51]Villalonga P, Guasch RM, Riento K, et al. RhoE inhibits cell cycle progression and Ras-induced transformation [J]. Mol Cell Biol, 2004, 24(18): 7829-7840

[52]Riou P, Villalonga P, Ridley AJ.Rnd proteins: multifunctional regulators of the cytoskeleton and cell cycle progression [J]. Bioessays, 2010, 32(11): 986-992

[53]Chardin P. Function and regulation of Rnd proteins [J]. Nat Rev Mol Cell Biol, 2006, 7(1): 54-62

[54]Gündogdu MS, Liu H, Metzdorf D, et al. The haematopoietic GTPase RhoH modulates IL3 signalling through regulation of STAT activity and IL3 receptor expression[J].Mol Cancer,2010, 9: 225

[55]Fueller F, Kubatzky KF. The small GTPase RhoH is an atypical regulator of haematopoietic cells [J]. Cell Commun Signal, 2008, 6: 6

[56]Wilkins A, Carpenter CL. Regulation of RhoBTB2 by the Cul3 ubiquitin ligase complex[J]. Methods Enzymol, 2008, 439: 103-109

[57]Wilkins A, Ping Q, Carpenter C L. RhoBTB2 is a substrate of the mammalian Cul3 ubiquitin ligase complex [J]. Genes Dev, 2004, 18(8): 856-861

[58]Mao H, Zhang L, Yang Y, et al. RhoBTB2 (DBC2) functions as tumor suppressor via inhibiting proliferation, preventing colony formation and inducing apoptosis in breast cancer cells[J].Gene,2011, 486(1-2): 74-80

[59]Berthold J, Schenkova K, Rivero F.  Rho GTPases of the RhoBTB subfamily and tumorigenesis [J]. Acta Pharmacol Sin, 2008, 29(3): 285-295

[60]Siripurapu V, Meth J, Kobayashi N, et al. DBC2 significantly influences cell-cycle, apoptosis, cytoskeleton and membrane-trafficking pathways [J]. J Mol Biol, 2005, 346(1): 83-89

[61]Vincent S, Jeanteur P, Fort P. Growth-regulated expression of rhoG, a new member of the ras homolog gene family [J]. Mol Cell Biol, 1992, 12(7): 3138-3148

[62]Gauthier-Rouvière C, Vignal E, Mériane M, et al. RhoG GTPase controls a pathway that independently activates Rac1 and Cdc42Hs [J]. Mol Biol Cell, 1998, 9(6): 1379-1394

[63]Roux P, Gauthier-Rouvière C, Doucet-Brutin S, et al. The small GTPases Cdc42Hs, Rac1 and RhoG delineate Raf-independent pathways that cooperate to transform NIH3T3 cells [J]. Curr Biol, 1997, 7 (9): 629-637

[64]Murphy GA, Solski PA, Jillian SA, et al. Cellular functions of TC10, a Rho family GTPase: regulation of morphology, signal transduction and cell growth [J]. Oncogene, 1999, 18(26): 3831-3845

[65]Murphy GA, Jillian SA, Michaelson D, et al. Signaling mediated by the closely related mammalian Rho family GTPases TC10 and Cdc42 suggests distinct functional pathways [J]. Cell Growth Differ, 2001, 12(3): 157-167

[66]Ridley AJ. Rho GTPases and actin dynamics in membrane protrusions and vesicle trafficking [J]. Trends Cell Biol, 2006, 16(10): 522-529

[67]Gad A K, Aspenstrom P. Rif proteins take to the RhoD: Rho GTPases at the crossroads of actin dynamics and membrane trafficking [J]. Cell Signal, 2010, 22(2):183-189

[68]Tsubakimoto K, Matsumoto K, Abe H, et al. Small GTPase RhoD suppresses cell migration and cytokinesis [J]. Oncogene, 1999, 18(15): 2431-2440

[69]Kyrkou A, Soufi M, Bahtz R, et al. RhoD participates in the regulation of cell-cycle progression and centrosome duplication [J]. Oncogene, 2012, doi: 10.1038/onc.2012.195[Epub ahead of print]

[70]Fan L, Pellegrin S, Scott A, et al. The small GTPase Rif is an alternative trigger for the formation of actin stress fibers in epithelial cells [J]. J Cell Sci, 2010, 123(Pt 8): 1247-1252

[71]Fujisawa K, Fujita A, Ishizaki T, et al. Identification of the Rho-binding domain of p160ROCK, a Rho-associated coiled-coil containing protein kinase [J]. J Biol Chem, 1996, 271(38): 23022-23028

[72]Roovers K, Assoian R K. Effects of rho kinase and actin stress fibers on sustained extracellular signal-regulated kinase activity and activation of G (1) phase cyclin-dependent kinases[J].Mol Cell Biol, 2003, 23(12): 4283-4294

[73]Qing H, Gong W, Che Y, et al. PAK1-dependent MAPK pathway activation is required for colorectal cancer cell proliferation [J]. Tumour Biol, 2012, 33(4): 985-994

[74]Shrestha Y, Schafer EJ, Boehm JS, et al. PAK1 is a breast cancer oncogene that coordinately activates MAPK and MET signaling [J]. Oncogene, 2012, 31(29): 3397-3408

[75]Malumbres M, Barbacid M. RAS oncogenes: the first 30 years[J].Nat Rev Cancer,2003,3(6):459-465

[76]Lord CJ, Ashworth A. The DNA damage response and cancer therapy [J]. Nature, 2012, 481(7381): 287-294

[77]Branzei D,Foiani M. Regulation of DNA repair throughout the cell cycle [J]. Nat Rev Mol Cell Biol, 2008, 9(4): 297-308

[78]Croft DR, Crighton D, Samuel MS, et al. p53-mediated transcriptional regulation and activation of the actin cytoskeleton regulatory RhoC to LIMK2 signaling pathway promotes cell survival [J]. Cell Res, 2011, 21(4): 666-682

[79]Santamaria D. Ortega S. Cyclins and CDKS in development and cancer: lessons from genetically modified mice [J]. Front Biosci, 2006, 11: 1164-1188

[80]Deshpande A, Sicinski P, Hinds PW. Cyclins and cdks in development and cancer: a perspective [J]. Oncogene, 2005, 24(17): 2909-2915

[81]Baumann P, West S C.Role of the human RAD51 protein in homologous recombination and double-stranded-break repair [J]. Trends Biochem Sci, 1998, 23(7): 247-251

[82] Shaheen M, Allen C, Nickoloff JA, et al. Synthetic lethality: exploiting the addiction of cancer to DNA repair [J]. Blood, 2011, 117(23): 6074-6082

[83] Jirawatnotai S, Hu Y, Michowski W, et al. A function for cyclin D1 in DNA repair uncovered by protein interactome analyses in human cancers[J].Nature,2011,474(7350): 230-234

Funding

Supported by Program of Higherlevel Talents of Inner Mongolia University (SPH-IMU,30105-125128)

PDF(876 KB)

287

Accesses

0

Citation

Detail

Sections
Recommended

/