[ 1 ] Newman D J, Cragg G M, Snader K M. Natural Products as Sources of New Drugs over the Period 1981
−2002 [J] . J Nat Prod, 2003,
66 (7) : 1022–1037
[ 2 ] Walsh C T, Nolan E M. Morphing Peptide Backbones into Heterocycles [J] . Proc Natl Acad Sci U S A,
2008,
105 (15) : 5655–5656
[ 3 ] Nolan E M, Walsh C T. How Nature Morphs Peptide Scaffolds into Antibiotics [J] . ChemBioChem,
2009, 10 (1) : 34–53
[ 4 ] Destoumieux-Garzón D, Peduzzi J, Rebuffat S. Focus on modified microcins: structural features and mechanisms of action [J] . Biochimie, 2002,
84 (5-6) : 511–519
[ 5 ]
Duquesne S, Destoumieux-Garzón D, Peduzzi J,
et al. [J] . Nat Prod Rep, 2007, 24 (4) : 708–734Microcins, gene-encoded antibacterial peptides from enterobacteria
[ 6 ] Duquesne S, Petit V, Peduzzi J, et al. Structural and functional diversity of microcins, gene-encoded antibacterial peptides from enterobacteria. [J] . J Mol Microbiol Biotechnol, 2007, 13 (4): 200–209[ 7 ] Severinov K, Semenova E, Kazakov A, et al. Low-molecular-weight post-translationally modified microcins. [J] . Mol Microbiol, 2007, 65 (6): 1380–1394[ 8 ] McAuliffe O, Ross R P, Hill C. Lantibiotics: structure, biosynthesis and mode of action.[J] . FEMS Microbiol Rev, 2001, 25 (3) : 285–308[ 9 ] Chatterjee C, Paul M, Xie L, et al.Biosynthesis and mode of action of lantibiotics[J] . Chem Rev, 2005, 105 (2): 633–683[10] Patton G C, van der Donk W A.New developments in lantibiotic biosynthesis and mode of action[J] . Curr Opin Microbiol, 2005, 8 (5): 543–551[11] Schmidt E W, Nelson J T, Rasko D A, et al.Patellamide A and C biosynthesis by a microcin-like pathway in Prochloron didemni, the cyanobacterial symbiont of Lissoclinum patellaa [J] . Proc Natl Acad Sci U S A, 2005, 102 (20) : 7315–7320[12] Lee S W, Mitchell D A, Markley A L, et al. Discovery of a widely distributed toxin biosynthetic gene cluster[J] . Proc Natl Acad Sci U S A, 2008, 105 (15) : 5879–5884[13] Schwarzer D, Finking R, Marahiel M A. Nonribosomal peptides: from genes to products. [J] . Nat Prod Rep, 2003,
20 (3): 275–287
[14] Cane D E, Walsh C T, Khosla C. Harnessing the biosynthetic code: combinations, permutations, and mutations[J] .Science, (1998),
282 (5386) : 63–68
[15]
Walsh C T. Polyketide and nonribosomal peptide antibiotics: modularity and versatility[J] .Science,
2004,
303 (5665) : 1805–1810
[16]
Kieser T, Bibb M J, Buttner M J, et al. Practical Streptomyces Genetics. Microbiology Today (Book
Reviews), 2000
[17] Hutchinson C R. Polyketide and non-ribosomal peptide synthases: falling together by coming apart [J] .
Proc Natl Acad Sci U S A, 2003, 100 (6) : 3010–3012
[18] Desai R P, Leaf T, Woo E,
et al. Enhanced production of heterologous macrolide aglycones by fed-batch cultivation of Streptomyces coelicolor [J] .
J Ind Microbiol Biotechnol, 2002, 28 (5) : 297–301
[19] Thorpe H M, Smith M C. In Vitro Site-Specific Integration of Bacteriophage DNA Catalyzed by a Recombinase of the Resolvase/Invertase Family [J] . Proc Natl Acad Sci U S A, 1998,
95 (10) : 5505–5510
[20] Pfeifer BA, Admiraal SJ, Gramajo H,
et al. Biosynthesis of complex polyketides in a metabolically engineered strain of E. colii [J] .Science, 2001,
291 (5509) : 1790–1792
[21] Sivonen K, Börner T. Bioactive Compounds Produced by cyanobacteria. The Cyanobacteria: Molecular
biology, genomics and evolution (M).Caister Academic Press, Norfolk, United Kingdom. 2008,
7 : 159–197
[22] Magarvey N A, Beck Z Q, Golakoti T,
et al. Biosynthetic characterization and chemoenzymatic assembly of the cryptophycins. Potent anticancer agents from cyanobionts [J] .
ACS Chem Biol, 2006,
1 (12) : 766–779
[23] Welker M, von Döhren H. Cyanobacterial peptides - nature's own combinatorial biosynthesis. [J] .
FEMS Microbiol Rev, 2006, 30 (4)
: 530–563
[24] Donia M S, Ravel J, Schmidt E W. A global assembly line for cyanobactins. [J] .
Nat Chem Biol, 2008,
4 (6)
: 341–343
[25] Donia M S, Hathaway B J, Sudek S,
et al. Natural combinatorial peptide libraries in cyanobacterial symbionts of marine ascidians[J] .
Nat Chem Biol, 2006,2 (12) : 729–735
[26] Sudek S, Haygood M G, Youssef D T,
et al. Structure of trichamide, a cyclic peptide from the bloom-forming cyanobacterium Trichodesmium erythraeum, predicted from the genome sequence [J] .
Appl Environ Microbiol, 2006, 72 (6) : 4382–4387
[27] Ziemert N, Ishida K, Quillardet P,
et al. Microcyclamide biosynthesis in two strains of Microcystis aeruginosa: from structure to genes and vice versaa [J] .
Appl Environ Microbiol, 2008, 74 (6) : 1791– 1797
[28] Salvatella X, Caba J M, Albericio F,
et al. Solution structure of the antitumor candidate trunkamide A by 2D NMR and restrained simulated annealing methods. [J] .
J Org Chem, 2003, 68 (2): 211–215
[29] Williams A B, Jacobs R S. A marine natural product, patellamide D, reverses multidrug resistance in a human leukemic cell line [J] .
Cancer Lett,
71 (1-3)
: 97–102
[30] Fu X, Do T, Schmitz F J,
et al. New Cyclic Peptides from the Ascidian
Lissoclinum patella[J] . J Nat
Prod, 1998,
61 (12) : 1547–1551
[31] Schnell N, Entian K D, Schneider U,
et al. Prepeptide sequence of epidermin, a ribosomally synthesized antibiotic with four sulphide-rings.[J] .
Nature, 1988, 333 (6170) : 276–278
[32] Van der Meer J R, Polman J, Beerthuyzen M M,
et al. Characterization of the Lactococcus lactis nisin A operon genes nisP, encoding a subtilisin-like serine protease involved in precursor processing, and nisR, encoding a regulatory protein involved in nisin biosynthesis[J] .
J Bacteriol, 1993, 175 (9) : 2578–2588
[33] Balabas B E, Montgomery B L, Ong L E,
et al. CotB is essential for complete activation of green light-induced genes during complementary chromatic adaptation in Fremyella diplosiphonis[J] .
Mol Microbiol, 2003, 50 (3) : 781–793[34] González-Pastor J E, San Millán J L, Castilla M A,
et al. Structure and organization of plasmid genes required to produce the translation inhibitor microcin C7[J] .
J Bacteriol, 1995, 177 (24) : 7131–7140
[35] Fuller J D, Camus A C, Duncan C L,
et al. Identification of a streptolysin S-associated gene cluster and its role in the pathogenesis of Streptococcus iniae disease[J] . Infect Immun, 2002,
70 (10) : 5730– 5739
[36] Breil B , Borneman J, Triplett E W. A newly discovered gene, tfuA, involved in the production of the ribosomally synthesized peptide antibiotic trifolitoxin[J] .
J Bacteriol, 1996, 178 (14) : 4150–4156
[37] Ichinose K, Bedford D J, Tornus D,
et al. The granaticin biosynthetic gene cluster of Streptomyces violaceoruber Tü22: sequence analysis and expression in a heterologous host. [J].
Chem Biol, 1998, 5 (11) : 647–659
[38] Milne J C, Roy R S, Eliot A C,
et al. Cofactor requirements and reconstitution of microcin B17 synthetase: a multienzyme complex that catalyzes the formation of oxazoles and thiazoles in the antibiotic microcin B17 [J] .
Biochemistry, 1999, 38 (15) : 4768–4781[39]
Gehring A M, Mori I I, Perry R D,
et al. The nonribosomal peptide synthetase HMWP2 forms a thiazoline ring during biogenesis of yersiniabactin, an iron-chelating virulence factor of yersinia pestis [J] .
Biochemistry, 1998, 37(48):17104 [40] Banerjee S, Hansen J N. Structure and expression of a gene encoding the precursor of subtilin, a small protein antibiotic [J] . J Biol Chem. 1988,
263 (19):
9508-9514[41] Long P F, Dunlap W C, Battershill C N,
et al.
Shotgun cloning and heterologous expression of the patellamide gene cluster as a strategy to achieving sustained metabolite production [J] . Chembiochem, 2005,
6 (10) : 1760–1765
[42] Béjà O, Suzuki M T, Koonin E V,
et al.
Construction and analysis of bacterial artificial chromosome libraries from a marine microbial assemblage[J] . Environ Microbiol, 2000,
2 (5) : 516–529
[43]
Sosio M, Giusino F, Cappellano C,
et al. Artificial chromosomes for antibiotic-producing actinomycetes
[J] .
Nat Biotechnol, 2000, 18 :343–345
[44]
Paerl H W, Fulton R S 3rd, Moisander P H,
et al. Harmful freshwater algal blooms, with an emphasis on cyanobacteria [J] .
Sci World J, 2001, 1 : 76–113[45] Welker M, von Döhren H. Cyanobacterial peptides - nature's own combinatorial biosynthesis[J] .
FEMS Microbiol Rev, 2006,
30 (4) : 530–563
[46] Murakami M,
et al.
Microviridins, elastase inhibitors from the cyanobacterium Nostoc Sun Q, Ishida K,
minutum (NIES-26)[J] . Phytochemistry, 1997,
45 (6) : 1197–1202
[47]
Okino T, Matsuda H, Murakami M, et al. New microviridins, elastase inhibitors from the blue-green
Alga
Microcystis aeruginosa [J] .
Tetrahedron, 1995,
51 (39) : 10679–10686
[48] Rohrlack T, Christoffersen K, Kaebernick M,
et al. Cyanobacterial protease inhibitor microviridin J causes a lethal molting disruption in Daphnia pulicaria[J] .Appl Environ Microbiol, 2004,
70 (8) :
5047–5050
[49] Fischbach M A, Walsh C T. Assembly-line enzymology for polyketide and nonribosomal Peptide antibiotics: logic, machinery, and mechanisms[J] .
Chem Rev, 2006, 106 (8) : 3468–3496[50]
Rouhiainen L, Paulin L, Suomalainen S,
et al. Genes encoding synthetases of cyclic depsipeptides, anabaenopeptilides, in Anabaena strain 90[J] .
Mol Microbiol, 2000, 37 (1) : 156–167[51]
Ziemert N, Ishida K, Liaimer A,
et al[J] . Angew Chem Int Ed Engl, 2008, 47 (40) : 7756–7759. Ribosomal synthesis of tricyclic depsipeptides in bloom-forming cyanobacteria
[52] Leikoski N, Fewer D P, Sivonen K. Widespread occurrence and lateral transfer of the cyanobactin biosynthesis gene cluster in cyanobacteria [J] .
Appl Environ Microbiol, 2009, 75 (3) : 853–857[53] Leikoski N, Fewer D P, Jokela J,
et al. Highly diverse cyanobactins in strains of the genus Anabaena
[J] .
Appl Environ Microbiol, 2010, 76 (3) : 701–709 [54] Willey J M, van der Donk W A. Lantibiotics: peptides of diverse structure and function [J] . A
nnu Rev Microbiol, 2007,
61 : 477–501
[55] Rey M W, Ramaiya P, Nelson B A,
et al. Complete genome sequence of the industrial bacterium Bacillus licheniformis and comparisons with closely related Bacillus species [J] .
Genome Biol, 2004, 5 (10) : R77[56] Begley M, Cotter P D, Hill C,
et al. Identification of a novel two-peptide lantibiotic, lichenicidin, following rational genome mining for LanM proteins [J] .
Appl Environ Microbiol, 2009, 75 (17) : 5451–5460[57] Dischinger J, Josten M, Szekat C,
et al. Production of the novel two-peptide lantibiotic lichenicidin by Bacillus licheniformis DSM 13 [J] .
PLoS One, 2009, 4 (8) : e6788[58] Caetano T, Krawczyk J M, Mösker E,
et al. Heterologous expression, biosynthesis, and mutagenesis of type II lantibiotics from Bacillus licheniformis in Escherichia coli[J] .
Chem Biol, 2011, 18 (1) :
90–100
[59] Lin Y, Teng K, Huan L,
et al. Dissection of the bridging pattern of bovicin HJ50, a lantibiotic containing a characteristic disulfide bridgei[J] .
Microbiol Res, 2011,
166 (3) : 146–154
[60] Steinerová N, Lipavská H, Stajner K,
et al.Production of quinomycin A in Streptomyces lasaliensis. [J]
.Folia Microbiol (Praha), 1987, 32 (1) : 1–5[61] Watanabe K, Hotta K, Praseuth A P,
et al. Total biosynthesis of antitumor nonribosomal peptides in
Escherichia coli[J] .
Nat Chem Biol, 2006, 2 (8) : 423–428
[62] Watanabe K, Oikawa H Robust platform for de novo production of heterologous polyketides and nonribosomal peptides in Escherichia coli.[J] .
Org Biomol Chem, 2007, 5 (4): 593–602
[63] Weissman K J, Leadlay P F.
Combinatorial biosynthesis of reduced polyketides. [J] . Nat Rev Microbiol,
2005,
3 (12) : 925–936
[64] Wenzel S C, Gross F, Zhang Y,
et al. Heterologous expression of a myxobacterial natural productsassembly line in pseudomonads via red/ET recombineering [J] .
Chem Biol, 2005, 12 (3) : 349–356
[65] Menzella H G, Reid R, Carney J R,
et al. Combinatorial polyketide biosynthesis by de novo design and rearrangement of modular polyketide synthase genes [J] .
Nat Biotechnol, 2005, 23 (9) :1171–1176