The Influence of Environmental Factors on Transgenerational Transmission Mediated by Sperm sncRNAs
HUA Min-Min1), SHI Hui-Juan1), RU Yan-Fei2)*
1)NHC Key Lab of Reproduction Regulation (Shanghai Institute for Biomedical and Pharmaceutical Technologies), Fudan University, Shanghai 200032, China; 2)Zhejiang Provincial Laboratory of Life Sciences and Biomedicine, Key Laboratory of Structural Biology of Zhejiang Province/Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou 310024, Zhejiang, China
Abstract:Developmental programming of the embryo is controlled by both genetic information and epigenetic information. During fertilization, this information carried by sperms can be delivered to the zygote, where they can regulate early embryonic development. Mature sperms are highly abundant in epigenetic information, and including small non-coding RNAs (sncRNAs), which play important roles during spermatogenesis, fertilization, and early embryo development. Recent studies revealed that sncRNAs can regulate gene expression, mediate protein translation, transmit the epigenetic information, and so on. Recently, increasing evidences showed that parental environment exposure, such as diet, toxicant, pressure, may cause the inheritance of acquired characteristics, and they can be stored and transmitted to the next generation by epigenetic information in germ cells. Recent advances of transgenerational inheritance revealed that sncRNAs are environmentally responsive epigenetic molecules in sperms. This review summarized current knowledge about the sncRNAs information in sperms, including transfer RNA-derived small RNAs (tsRNAs), rsRNAs (risbosome-RNA derived small RNAs), microRNAs (miRNAs) and PIWI-interacting RNAs (piRNAs), that are responsive to environmental factors and are capable of affecting embryonic development and the phenotype of the offspring later in life. Furthermore, this review also delineated potential molecular mechanisms that might regulate sperm sncRNAs.
华敏敏, 施惠娟, 茹彦飞. 精子sncRNAs在环境暴露相关跨代遗传中的作用[J]. 中国生物化学与分子生物学报, 2022, 38(2): 127-136.
HUA Min-Min, SHI Hui-Juan, RU Yan-Fei. The Influence of Environmental Factors on Transgenerational Transmission Mediated by Sperm sncRNAs. Chinese Journal of Biochemistry and Molecular Biol, 2022, 38(2): 127-136.
[1] Chen Q, Yan M, Cao Z, et al. Sperm tsRNAs contribute to intergenerational inheritance of an acquired metabolic disorder[J]. Science, 2016, 351(6271): 397-400 [2] Hammoud S S, Nix D A, Zhang H, et al. Distinctive chromatin in human sperm packages genes for embryo development[J]. Nature, 2009, 460(7254): 473-478 [3] Sassone-Corsi P. Unique chromatin remodeling and transcriptional regulation in spermatogenesis[J]. Science, 2002, 296(5576): 2176-2178 [4] Sharma U, Conine C C, Shea J M, et al. Biogenesis and function of tRNA fragments during sperm maturation and fertilization in mammals[J]. Science, 2016, 351(6271): 391-396 [5] Jirtle R L, Skinner M K. Environmental epigenomics and disease susceptibility[J]. Nat Rev Genet, 2007, 8(4): 253-262 [6] Gapp K, Jawaid A, Sarkies P, et al. Implication of sperm RNAs in transgenerational inheritance of the effects of early trauma in mice[J]. Nat Neurosci, 2014, 17(5): 667-669 [7] Zeybel M, Hardy T, Wong Y K, et al. Multigenerational epigenetic adaptation of the hepatic wound-healing response[J]. Nat Med, 2012, 18(9): 1369-1377 [8] Anway M D, Cupp A S, Uzumcu M, et al. Epigenetic transgenerational actions of endocrine disruptors and male fertility[J]. Science, 2005, 308(5727): 1466-1469 [9] Kaati G, Bygren L O, Edvinsson S. Cardiovascular and diabetes mortality determined by nutrition during parents′ and grandparents’ slow growth period[J]. Eur J Hum Genet, 2002,10(11): 682-688 [10] Pembrey M E, Bygren L O, Kaati G, et al. Sex-specific, male-line transgenerational responses in humans[J]. Eur J Hum Genet, 2006, 14(2): 159-166 [11] Grandjean V, Fourré S, De Abreu D A, et al. RNA-mediated paternal heredity of diet-induced obesity and metabolic disorders[J]. Sci Rep, 2015, 5: 18193 [12] Rodgers A B, Morgan C P, Bronson S L, et al. Paternal stress exposure alters sperm microRNA content and reprograms offspring HPA stress axis regulation[J]. J Neurosci, 2013, 33(21): 9003-9012 [13] Rodgers A B, Morgan C P, Leu N A, et al. Transgenerational epigenetic programming via sperm microRNA recapitulates effects of paternal stress[J]. Proc Natl Acad Sci U S A, 2015, 112(44): 13699-13704 [14] Heard E, Martienssen R A. Transgenerational epigenetic inheritance: myths and mechanisms[J]. Cell, 2014, 157(1): 95-109 [15] Sciamanna I, Serafino A, Shapiro J A, et al. The active role of spermatozoa in transgenerational inheritance[J]. Proc Biol Sci, 2019, 286(1909): 20191263 [16] Rando O J, Simmons R A. I′m eating for two: parental dietary effects on offspring metabolism[J]. Cell, 2015, 161(1): 93-105 [17] Rando O J. Daddy issues: paternal effects on phenotype[J]. Cell, 2012, 151(4): 702-708 [18] Lumey L H, Stein A D, Kahn H S, et al. Cohort profile: the dutch hunger winter families study[J]. Int J Epidemiol, 2007, 36(6): 1196-1204 [19] Ng S F, Lin R C, Laybutt D R, et al. Chronic high-fat diet in fathers programs β-cell dysfunction in female rat offspring[J]. Nature, 2010, 467(7318): 963-966 [20] Carone B R, Fauquier L, Habib N, et al. Paternally induced transgenerational environmental reprogramming of metabolic gene expression in mammals[J]. Cell, 2010, 143(7): 1084-1096 [21] Anderson L M, Riffle L, Wilson R, et al. Preconceptional fasting of fathers alters serum glucose in offspring of mice[J]. Nutrition, 2006, 22(3): 327-331 [22] Dietz D M, Laplant Q, Watts E L, et al. Paternal transmission of stress-induced pathologies[J]. Biol Psychiatry, 2011, 70(5): 408-414 [23] Dias B G, Ressler K J. Parental olfactory experience influences behavior and neural structure in subsequent generations[J]. Nat Neurosci, 2014, 17(1): 89-96 [24] Vallaster M P, Kukreja S, Bing X Y, et al. Paternal nicotine exposure alters hepatic xenobiotic metabolism in offspring[J]. Elife, 2017, 6: e24711 [25] Feng S, Jacobsen S E, Reik W. Epigenetic reprogramming in plant and animal development[J]. Science, 2010, 330(6004): 622-627 [26] Iqbal K, Tran D A, Li A X, et al. Deleterious effects of endocrine disruptors are corrected in the mammalian germline by epigenome reprogramming[J]. Genome Biol, 2015, 16(1): 59 [27] Katz D J, Edwards T M, Reinke V, et al. A C. elegans LSD1 demethylase contributes to germline immortality by reprogramming epigenetic memory[J]. Cell, 2009, 137(2): 308-320 [28] El Hajj N, Zechner U, Schneider E, et al. Methylation status of imprinted genes and repetitive elements in sperm DNA from infertile males[J]. Sex Dev, 2011, 5(2): 60-69 [29] Kobayashi H, Sato A, Otsu E, et al. Aberrant DNA methylation of imprinted loci in sperm from oligospermic patients[J]. Hum Mol Genet, 2007, 16(21): 2542-2551 [30] Hua M, Liu W, Chen Y, et al. Identification of small non-coding RNAs as sperm quality biomarkers for in vitro fertilization[J]. Cell Discov, 2019, 5: 20 [31] Peng H, Shi J, Zhang Y, et al. A novel class of tRNA-derived small RNAs extremely enriched in mature mouse sperm[J]. Cell Res, 2012, 22(11): 1609-1612 [32] Nixon B, Stanger S J, Mihalas B P, et al. The microRNA signature of mouse spermatozoa is substantially modified during epididymal maturation[J]. Biol Reprod, 2015, 93(4): 91 [33] Thomson T, Lin H. The biogenesis and function of PIWI proteins and piRNAs: progress and prospect[J]. Annu Rev Cell Dev Biol, 2009, 25: 355-376 [34] Schuster A, Tang C, Xie Y, et al. SpermBase: a database for sperm-borne RNA contents[J]. Biol Reprod, 2016, 95(5): 99 [35] Loher P, Telonis A G, Rigoutsos I. MINTmap: fast and exhaustive profiling of nuclear and mitochondrial tRNA fragments from short RNA-seq data[J]. Sci Rep, 2017, 7: 41184 [36] Keam S P, Hutvagner G. tRNA-Derived Fragments (tRFs): emerging new roles for an ancient RNA in the regulation of gene expression[J]. Life (Basel), 2015, 5(4): 1638-1651 [37] Sharma U, Sun F, Conine C C, et al. Small RNAs are trafficked from the epididymis to developing mammalian sperm[J]. Dev Cell, 2018, 46(4): 481-494.e6 [38] Shi J, Zhang Y, Zhou T, et al. tsRNAs: the swiss army knife for translational regulation[J]. Trends Biochem Sci, 2019, 44(3): 185-189 [39] McStay B, Grummt I. The epigenetics of rRNA genes: from molecular to chromosome biology[J]. Annu Rev Cell Dev Biol, 2008, 24: 131-157 [40] Chu C, Yu L, Wu B, et al. A sequence of 28S rRNA-derived small RNAs is enriched in mature sperm and various somatic tissues and possibly associates with inflammation[J]. J Mol Cell Biol, 2017, 9(3): 256-259 [41] Zhang Y, Zhang X, Shi J, et al. Dnmt2 mediates intergenerational transmission of paternally acquired metabolic disorders through sperm small non-coding RNAs [J]. Nat Cell Biol, 2018, 20(5): 535-540 [42] Ghildiyal M, Zamore P D. Small silencing RNAs: an expanding universe[J]. Nat Rev Genet, 2009, 10(2): 94-108 [43] Rácz Z, Kaucsár T, Hamar P. The huge world of small RNAs: regulating networks of microRNAs (review)[J]. Acta Physiol Hung, 2011, 98(3): 243-251 [44] Skalsky R L, Cullen B R. Viruses, microRNAs, and host interactions[J]. Annu Rev Microbiol, 2010, 64: 123-141 [45] Wiemer E A. The role of microRNAs in cancer: no small matter[J]. Eur J Cancer, 2007, 43(10): 1529-1544 [46] Bartel D P. MicroRNAs: genomics, biogenesis, mechanism, and function[J]. Cell, 2004, 116(2): 281-297 [47] Gou L T, Dai P, Liu M F. Small noncoding RNAs and male infertility[J]. Wiley Interdiscip Rev RNA, 2014, 5(6): 733-745 [48] Grimson A, Srivastava M, Fahey B, et al. Early origins and evolution of microRNAs and Piwi-interacting RNAs in animals[J]. Nature, 2008, 455(7217): 1193-1197 [49] Dai P, Wang X, Gou L T, et al. A translation-activating function of MIWI/piRNA during mouse spermiogenesis[J]. Cell,2019, 179(7): 1566-1581.e16 [50] Gou L T, Dai P, Yang J H, et al. Pachytene piRNAs instruct massive mRNA elimination during late spermiogenesis[J]. Cell Res, 2014, 24(6): 680-700 [51] Aravin A A, Sachidanandam R, Girard A, et al. Developmentally regulated piRNA clusters implicate MILI in transposon control[J]. Science, 2007, 316(5825): 744-747 [52] Weiser N E, Kim J K. Multigenerational regulation of the caenorhabditis elegans chromatin landscape by germline small RNAs[J]. Annu Rev Genet, 2019, 53: 289-311 [53] Rechavi O, Houri-Ze′evi L, Anava S, et al. Starvation-induced transgenerational inheritance of small RNAs in C. elegans[J]. Cell, 2014, 158(2): 277-287 [54] Belicard T, Jareosettasin P, Sarkies P. The piRNA pathway responds to environmental signals to establish intergenerational adaptation to stress[J]. BMC Biol, 2018, 16(1): 103 [55] Rassoulzadegan M, Grandjean V, Gounon P, et al. RNA-mediated non-mendelian inheritance of an epigenetic change in the mouse[J]. Nature, 2006, 441(7092): 469-474 [56] Wagner K D, Wagner N, Ghanbarian H, et al. RNA induction and inheritance of epigenetic cardiac hypertrophy in the mouse[J]. Dev Cell, 2008, 14(6): 962-969 [57] Klastrup L K, Bak S T, Nielsen A L. The influence of paternal diet on sncRNA-mediated epigenetic inheritance[J]. Mol Genet Genomics,2019, 294(1): 1-11 [58] de Castro Barbosa T, Ingerslev L R, Alm P S, et al. High-fat diet reprograms the epigenome of rat spermatozoa and transgenerationally affects metabolism of the offspring[J]. Mol Metab, 2015, 5(3): 184-197 [59] Cropley J E, Eaton S A, Aiken A, et al. Male-lineage transmission of an acquired metabolic phenotype induced by grand-paternal obesity[J]. Mol Metab, 2016, 5(8): 699-708 [60] Walker E, Mittal V, Tessner K. Stress and the hypothalamic pituitary adrenal axis in the developmental course of schizophrenia[J]. Annu Rev Clin Psychol, 2008, 4: 189-216 [61] Short A K, Fennell K A, Perreau V M, et al. Elevated paternal glucocorticoid exposure alters the small noncoding RNA profile in sperm and modifies anxiety and depressive phenotypes in the offspring[J]. Transl Psychiatry, 2016, 6(6): e837 [62] Gapp K, van Steenwyk G, Germain P L, et al. Alterations in sperm long RNA contribute to the epigenetic inheritance of the effects of postnatal trauma[J]. Mol Psychiatry, 2020, 25(9): 2162-2174 [63] Schuster A, Skinner M K, Yan W. Ancestral vinclozolin exposure alters the epigenetic transgenerational inheritance of sperm small noncoding RNAs[J]. Environ Epigenet, 2016, 2(1): dvw001 [64] Skinner M K, Ben Maamar M, Sadler-Riggleman I, et al. Alterations in sperm DNA methylation, non-coding RNA and histone retention associate with DDT-induced epigenetic transgenerational inheritance of disease[J]. Epigenetics Chromatin, 2018, 11(1): 8 [65] Rompala G R, Simons A, Kihle B, et al. Paternal preconception chronic variable stress confers attenuated ethanol drinking behavior selectively to male offspring in a pre-stress environment dependent manner[J]. Front Behav Neurosci, 2018, 12: 257 [66] Rompala G R, Ferguson C, Homanics G E. Coincubation of sperm with epididymal extracellular vesicle preparations from chronic intermittent ethanol-treated mice is sufficient to impart anxiety-like and ethanol-induced behaviors to adult progeny[J]. Alcohol, 2020, 87: 111-120 [67] Rompala G R, Mounier A, Wolfe C M, et al. Heavy chronic intermittent ethanol exposure alters small noncoding RNAs in mouse sperm and epididymosomes[J]. Front Genet, 2018, 9: 32 [68] Tuorto F, Liebers R, Musch T, et al. RNA cytosine methylation by Dnmt2 and NSun2 promotes tRNA stability and protein synthesis[J]. Nat Struct Mol Biol, 2012, 19(9): 900-905 [69] Tyebji S, Hannan A J, Tonkin C J. Pathogenic infection in male mice changes sperm small RNA profiles and transgenerationally alters offspring behavior[J]. Cell Rep, 2020, 31(4): 107573 [70] Benito E, Kerimoglu C, Ramachandran B, et al. RNA-dependent intergenerational inheritance of enhanced synaptic plasticity after environmental enrichment[J]. Cell Rep, 2018, 23(2): 546-554 [71] Holland M L, Lowe R, Caton P W, et al. Early-life nutrition modulates the epigenetic state of specific rDNA genetic variants in mice[J]. Science, 2016, 353(6298): 495-498 [72] Shea J M, Serra R W, Carone B R, et al. Genetic and epigenetic variation, but not diet, shape the sperm methylome[J]. Dev Cell, 2015, 35(6): 750-758 [73] Wingo A P, Almli L M, Stevens J S, et al. DICER1 and microRNA regulation in post-traumatic stress disorder with comorbid depression[J]. Nat Commun, 2015, 6: 10106 [74] Kim Y K, Kim B, Kim V N. Re-evaluation of the roles of DROSHA, Export in 5, and DICER in microRNA biogenesis[J]. Proc Natl Acad Sci U S A, 2016, 113(13): E1881-E1889 [75] Hayashi K, Chuva de Sousa Lopes S M, Kaneda M, et al. MicroRNA biogenesis is required for mouse primordial germ cell development and spermatogenesis[J]. PLoS One, 2008, 3(3): e1738 [76] Maatouk D M, Loveland K L, McManus M T, et al. Dicer1 is required for differentiation of the mouse male germline[J]. Biol Reprod, 2008, 79(4): 696-703 [77] Dias C, Feng J, Sun H, et al. β-catenin mediates stress resilience through Dicer1/microRNA regulation[J]. Nature, 2014, 516(7529): 51-55 [78] Emde A, Eitan C, Liou L L, et al. Dysregulated miRNA biogenesis downstream of cellular stress and ALS-causing mutations: a new mechanism for ALS[J]. EMBO J, 2015, 34(21): 2633-2651 [79] Mayorga-Torres B J M, Camargo M, Cadavid Á P, et al. Are oxidative stress markers associated with unexplained male infertility?[J]. Andrologia, 2017, 49(5). doi:10.1111/and.12659.Epub2016Aug 10 [80] Bourc′his D, Voinnet O. A small-RNA perspective on gametogenesis, fertilization, and early zygotic development[J]. Science, 2010, 330(6004): 617-622 [81] Martínez G, Panda K, Köhler C, et al. Silencing in sperm cells is directed by RNA movement from the surrounding nurse cell [J]. Nat Plants, 2016, 2: 16030 [82] Reilly J N, McLaughlin E A, Stanger S J, et al. Characterisation of mouse epididymosomes reveals a complex profile of microRNAs and a potential mechanism for modification of the sperm epigenome[J]. Sci Rep, 2016, 6: 31794 [83] Morgan C P, Chan J C, Bale T L. Driving the next generation: paternal lifetime experiences transmitted via extracellular vesicles and their small RNA cargo[J]. Biol Psychiatry, 2019, 85(2): 164-171 [84] Cohen S P, Plunkett A R, Galvagno S M. On the relationship between beta-blockers, migraines and post-traumatic stress disorder: response to Peterlin et al[J]. Cephalalgia, 2012, 32(13): 1011-1012 [85] Gregor M F, Hotamisligil G S. Inflammatory mechanisms in obesity[J]. Annu Rev Immunol, 2011, 29: 415-445 [86] Fan Y, Liu Y, Xue K, et al. Diet-induced obesity in male C57BL/6 mice decreases fertility as a consequence of disrupted blood-testis barrier[J]. PLoS One, 2015, 10(4): e0120775 [87] Nargund V H. Effects of psychological stress on male fertility[J]. Nat Rev Urol, 2015, 12(7): 373-382 [88] Javurek A B, Spollen W G, Ali A M, et al. Discovery of a novel seminal fluid microbiome and influence of estrogen receptor alpha genetic status[J]. Sci Rep, 2016, 6: 23027 [89] Vojtech L, Woo S, Hughes S, et al. Exosomes in human semen carry a distinctive repertoire of small non-coding RNAs with potential regulatory functions[J]. Nucleic Acids Res, 2014, 42(11): 7290-7304 [90] Arroyo J D, Chevillet J R, Kroh E M, et al. Argonaute2 complexes carry a population of circulating microRNAs independent of vesicles in human plasma[J]. Proc Natl Acad Sci U S A, 2011, 108(12): 5003-5008 [91] Zhang Y, Zhang Y, Shi J, et al. Identification and characterization of an ancient class of small RNAs enriched in serum associating with active infection[J]. J Mol Cell Biol, 2014, 6(2): 172-174 [92] Ivanov P, O′Day E, Emara M M, et al. G-quadruplex structures contribute to the neuroprotective effects of angiogenin-induced tRNA fragments[J]. Proc Natl Acad Sci U S A, 2014, 111(51): 18201-18206 [93] Jodar M, Selvaraju S, Sendler E, et al. The presence, role and clinical use of spermatozoal RNAs[J]. Hum Reprod Update, 2013, 19(6): 604-624 [94] Siklenka K, Erkek S, Godmann M, et al. Disruption of histone methylation in developing sperm impairs offspring health transgenerationally[J]. Science, 2015, 350(6261): aab2006 [95] Le Thomas A, Stuwe E, Li S, et al. Transgenerationally inherited piRNAs trigger piRNA biogenesis by changing the chromatin of piRNA clusters and inducing precursor processing[J]. Genes Dev, 2014, 28(15): 1667-1680
没有找到本文相关文献
Chinese Journal of Biochemistry and Molecular Biol