The Regulatory Mechanism and Role of CircRNA in Tumors
XU Cai-Peng1),2),3),4), ZHANG Hong1),2),3)*, DI Cui-Xia1),2),3)*
1)Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China; 2)Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou 730000, China; 3)Key Laboratory of Medical Application of Heavy Ion Beam Radiation in Gansu Province, Lanzhou 730000, China; 4)University of Chinese Academy of Sciences, Beijing 100049, China
Abstract:Circular RNAs (circRNAs) are a class of non-coding RNAs that form closed rings in structure. They contain a high content in eukaryotic transcripts, and are characterized by richness, stability, high conservatism and tissue specificity. In recent years, it has been gradually revealed that circRNA can bind to some miRNAs or proteins and participate in the regulatory mechanisms of biogenesis and molecular functions, including the regulation of miRNAs molecular sponge, protein translation, gene transcription and RNA splicing. With the application of high-throughput sequencing and bioinformatics, circRNA has gradually become a new research hotspot in the field of non-coding RNA due to its special properties. The latest research evidence shows that circRNA plays a key role in the occurrence and development of tumors, and is inextricably linked with cell proliferation, apoptosis, angiogenesis, and metastasis, indicating that targeting circRNA will be attractive treatment strategies and potential biomarkers. In this paper, the characteristics and mechanism of circRNA were briefly described, the mechanism of action and regulation of circRNAs in human tumors were summarized, and the strategies and development prospects of circRNA in tumor research were further discussed. In sum, circRNA plays an important role in early diagnosis, precise treatment and prognosis prediction of tumors.
徐彩鹏, 张红, 狄翠霞. circRNA在肿瘤中的作用及调控机制[J]. 中国生物化学与分子生物学报, 2021, 37(11): 1449-1457.
XU Cai-Peng, ZHANG Hong, DI Cui-Xia. The Regulatory Mechanism and Role of CircRNA in Tumors. Chinese Journal of Biochemistry and Molecular Biol, 2021, 37(11): 1449-1457.
[1] Chen L L, Yang L. Regulation of circRNA biogenesis[J]. RNA Biol, 2015, 12(4): 381-388 [2] Sanger H L, Klotz G, Riesner D, et al. Viroids are single-stranded covalently closed circular RNA molecules existing as highly base-paired rod-like structures[J]. Proc Natl Acad Sci U S A, 1976, 73(11): 3852-3856 [3] Ebermann C, Schnarr T, Müller S. Recent advances in understanding circular RNAs[J]. F1000Res, 2020, 9: 655 [4] Li Y, Zheng Q, Bao C, et al. Circular RNA is enriched and stable in exosomes: a promising biomarker for cancer diagnosis[J]. Cell Res, 2015, 25(8): 981-984 [5] Guo J U, Agarwal V, Guo H, et al. Expanded identification and characterization of mammalian circular RNAs[J]. Genome Biol, 2014, 15(7): 409 [6] Salzman J, Gawad C, Wang P L, et al. Circular RNAs are the predominant transcript isoform from hundreds of human genes in diverse cell types[J]. PLoS One, 2012, 7(2): e30733 [7] Liang D, Wilusz J E. Short intronic repeat sequences facilitate circular RNA production[J]. Genes Dev, 2014, 28(20): 2233-2247 [8] Li F, Zhang L, Li W, et al. Circular RNA ITCH has inhibitory effect on ESCC by suppressing the Wnt/β-catenin pathway[J]. Oncotarget, 2015, 6(8): 6001-6013 [9] Barrett S P, Wang P L, Salzman J. Circular RNA biogenesis can proceed through an exon-containing lariat precursor[J]. Elife, 2015, 4: e07540 [10] 麦尔哈巴·阿不都热依木, 潘燕. 非编码RNA作为ceRNA在人癌症中的功能及机制[J].中国生物化学与分子生物学报(Maierhaba·Abdureyimu, Pan Yan. The function and mechanism of non-coding RNA as ceRNA in human cancer[J].Chin J Biochem Mol Biol), 2020,36 (8): 895-902 [11] Hansen T B, Jensen T I, Clausen B H, et al. Natural RNA circles function as efficient microRNA sponges[J]. Nature, 2013, 495(7441): 384-388 [12] Liang J, Shen Y C, Zhang X Y, et al. Circular RNA HIPK3 downregulation mediates hydrogen peroxide-induced cytotoxicity in human osteoblasts[J]. Aging, 2020(Albany NY), 12(2): 1159-1170 [13] Chen G, Shi Y, Liu M, et al. circHIPK3 regulates cell proliferation and migration by sponging miR-124 and regulating AQP3 expression in hepatocellular carcinoma[J]. Cell Death Dis, 2018, 9(2): 175 [14] Ke Z, Xie F, Zheng C, et al. CircHIPK3 promotes proliferation and invasion in nasopharyngeal carcinoma by abrogating miR-4288-induced ELF3 inhibition[J]. J Cell Physiol, 2019, 234(2): 1699-1706 [15] Jin P, Huang Y, Zhu P, et al. CircRNA circHIPK3 serves as a prognostic marker to promote glioma progression by regulating miR-654/IGF2BP3 signaling[J]. Biochem Biophys Res Commun, 2018, 503(3): 1570-1574 [16] Zhang Y, Zhang X O, Chen T, et al. Circular intronic long noncoding RNAs[J]. Mol Cell, 2013, 51(6): 792-806 [17] Li Z, Huang C, Bao C, et al. Exon-intron circular RNAs regulate transcription in the nucleus[J]. Nat Struct Mol Biol, 2015, 22(3): 256-264 [18] Yang B, Zhao J, Huo T, et al. Effects of CircRNA-ITCH on proliferation and apoptosis of hepatocellular carcinoma cells through inhibiting Wnt/β-catenin signaling pathway[J]. J BUON, 2020, 25(3): 1368-1374 [19] 许胜, 周露玙, 王昆. 环状RNA及其作为疾病标志物的潜能[J].中国生物化学与分子生物学报(Xu Sheng, Zhou Luyu, Wang Kun. Circular RNA and its potential as disease markers[J].Chin J Biochem Mol Biol), 2018, 34(2): 117-128 [20] Karreth F A, Pandolfi P P. ceRNA cross-talk in cancer: when ce-bling rivalries go awry[J]. Cancer Discov, 2013, 3(10): 1113-1121 [21] Ashwal-Fluss R, Meyer M, Pamudurti N R, et al. circRNA biogenesis competes with pre-mRNA splicing[J]. Mol Cell, 2014, 56(1): 55-66 [22] Wang Z, Lei X, Wu F X. Identifying Cancer-Specific circRNA-RBP Binding Sites Based on Deep Learning[J]. Molecules, 2019, 24(22): 4035 [23] Zang J, Lu D, Xu A. The interaction of circRNAs and RNA binding proteins: An important part of circRNA maintenance and function[J]. J Neurosci Res, 2020, 98(1): 87-97 [24] O'leary V B, Smida J, Matjanovski M, et al. The circRNA interactome-innovative hallmarks of the intra- and extracellular radiation response[J]. Oncotarget, 2017, 8(45): 78397-78409 [25] Jung E, Seong Y, Jeon B, et al. Global analysis of AGO2-bound RNAs reveals that miRNAs induce cleavage of target RNAs with limited complementarity[J]. Biochim Biophys Acta Gene Regul Mech, 2017, 1860(11): 1148-1158 [26] Memczak S, Jens M, Elefsinioti A, et al. Circular RNAs are a large class of animal RNAs with regulatory potency[J]. Nature, 2013, 495(7441): 333-338 [27] Du W W, Yang W, Liu E, et al. Foxo3 circular RNA retards cell cycle progression via forming ternary complexes with p21 and CDK2[J]. Nucleic Acids Res, 2016, 44(6): 2846-2858 [28] Du W W, Fang L, Yang W, et al. Induction of tumor apoptosis through a circular RNA enhancing Foxo3 activity[J]. Cell Death Differ, 2017, 24(2): 357-370 [29] Yu C Y, Li T C, Wu Y Y, et al. The circular RNA circBIRC6 participates in the molecular circuitry controlling human pluripotency[J]. Nat Commun, 2017, 8(1): 1149 [30] Jost I, Shalamova L A, Gerresheim G K, et al. Functional sequestration of microRNA-122 from Hepatitis C Virus by circular RNA sponges[J]. RNA Biol, 2018, 15(8): 1032-1039 [31] Zheng S L, Li L, Zhang H P. Progress on translation ability of circular RNA[J]. Yi Chuan, 2020, 42(5): 423-434 [32] Legnini I, Timoteo GD, Rossi F, et al. Circ-ZNF609 Is a Circular RNA that Can Be Translated and Functions in Myogenesis[J]. Mol Cell, 2017, 66(1): 22-37.9 [33] Yang Y, Fan X, Mao M, et al. Extensive translation of circular RNAs driven by N6-methyladenosine[J]. Cell Res, 2017, 27(5): 626-641 [34] Pamudurti N R, Bartok O, Jens M, et al. Translation of CircRNAs[J]. Mol Cell, 2017, 66(1): 9-21.e7 [35] Abdelmohsen K, Panda A C, Munk R, et al. Identification of HuR target circular RNAs uncovers suppression of PABPN1 translation by CircPABPN1[J]. RNA Biol, 2017, 14(3): 361-369 [36] Xie H, Ren X, Xin S, et al. Emerging roles of circRNA_001569 targeting miR-145 in the proliferation and invasion of colorectal cancer[J]. Oncotarget, 2016, 7(18):26680-26917 [37] Fang J, Pan Z, Guo X. Research advance of ANRIL on atherosclerosis by regulating cell proliferation and apoptosis[J]. Zhejiang Da Xue Xue Bao Yi Xue Ban, 2020, 49(1): 113-117 [38] Liang H F, Zhang X Z, Liu B G, et al. Circular RNA circ-ABCB10 promotes breast cancer proliferation and progression through sponging miR-1271[J]. Am J Cancer Res, 2017, 7(7): 1566-1576 [39] Zhang Y, Liu H, Li W, et al. CircRNA_100269 is downregulated in gastric cancer and suppresses tumor cell growth by targeting miR-630[J]. Aging(Albany NY), 2017, 9(6): 1585-1594 [40] Liu J, Xue N, Guo Y, et al. CircRNA_100367 regulated the radiation sensitivity of esophageal squamous cell carcinomas through miR-217/Wnt3 pathway[J]. Aging(Albany NY), 2019, 11(24): 12412-12427 [41] Chen Q, Liu T, Bao Y, et al. CircRNA cRAPGEF5 inhibits the growth and metastasis of renal cell carcinoma via the miR-27a-3p/TXNIP pathway[J]. Cancer Lett, 2020, 469: 68-77 [42] Xu L, Zhang M, Zheng X, et al. The circular RNA ciRS-7 (Cdr1as) acts as a risk factor of hepatic microvascular invasion in hepatocellular carcinoma[J]. J Cancer Res Clin Oncol, 2017, 143(1):17-27 [43] Zhou X, Hu Y, Dai L, et al. MicroRNA-7 Inhibits Tumor Metastasis and Reverses Epithelial-Mesenchymal Transition through AKT/ERK1/2 Inactivation by Targeting EGFR in Epithelial Ovarian Cancer[J]. PLoS One, 2014, 9(5):e96718 [44] Chen J, Li Y, Zheng Q, et al. Circular RNA profile identifies circPVT1 as a proliferative factor and prognostic marker in gastric cancer[J]. Cancer Lett, 2017, 388: 208-219 [45] 蔡明林, 李晓龙,刘刚. 右美托咪定通过调控PTEN-PI3K/Akt信号通路对骨肉瘤细胞侵袭和迁移能力的影响及机制研究[J]. 医学分子生物学杂志(Cai Minglin, Li Xiaolong, Liu Gang. The effect of dexmedetomidine on the invasion and migration of osteosarcoma cells by regulating the PTEN-PI3K/Akt signaling pathway and its mechanism[J]. J Med Mol Biol), 2019(1):35-40 [46] Feng J, Wang X, Zhu W, et al. MicroRNA-630 suppresses epithelial-to-mesenchymal transition by regulating FoxM1 in gastric cancer cells[J]. Biochemistry (Mosc), 2017, 82(6): 707-714 [47] Li P, Chen H, Chen S, et al. Circular RNA 0000096 affects cell growth and migration in gastric cancer[J]. Br J Cancer, 2017, 116(5): 626-633 [48] Chen N, Zhao G, Yan X, et al. A novel FLI1 exonic circular RNA promotes metastasis in breast cancer by coordinately regulating TET1 and DNMT1[J]. Genome Biol, 2018, 19(1): 218 [49] Meng J, Chen S, Han J X, et al. Twist1 Regulates Vimentin through Cul2 Circular RNA to Promote EMT in Hepatocellular Carcinoma[J]. Cancer Res, 2018, 78(15): 4150-4162 [50] Huang X Y, Huang Z L, Huang J, et al. Exosomal circRNA-100338 promotes hepatocellular carcinoma metastasis via enhancing invasiveness and angiogenesis[J]. J Exp Clin Cancer Res. 2020, 39(1): 20 [51] Yao J T, Zhao S H, Liu Q P, et al. Over-expression of CircRNA_100876 in non-small cell lung cancer and its prognostic value[J]. Pathol Res Pract, 2017, 213(5):453-456 [52] Zhong Z, Huang M, Lv M, et al. Circular RNA MYLK as a competing endogenous RNA promotes bladder cancer progression through modulating VEGFA/VEGFR2 signaling pathway[J]. Cancer Lett, 2017, 403: 305-317 [53] Li Y, Zheng F, Xiao X, et al. CircHIPK3 sponges miR-558 to suppress heparanase expression in bladder cancer cells[J]. EMBO Rep, 2017, 18(9): 1646-1659 [54] Xu Y, Leng K, Yao Y, et al. A novel circular RNA, circ-CCAC1, contributes to CCA progression, induces angiogenesis, and disrupts vascular endothelial barriers[J]. Hepatology. 2020,doi:10.1002/hep.31493 [55] Zhang S, Liao K, Miao Z, et al. CircFOXO3 promotes glioblastoma progression by acting as a competing endogenous RNA for NFAT5[J]. Neuro Oncol, 2019, 21(10): 1284-1296 [56] He D, Zheng J, Hu J, et al. Long non-coding RNAs and pyroptosis[J]. Clin Chim Acta, 2020, 504: 201-208 [57] Zhang H, Wang G, Ding C, et al. Increased circular RNA UBAP2 acts as a sponge of miR-143 to promote osteosarcoma progression[J]. Oncotarget, 2017, 8(37): 61687-61697 [58] Hsiao K Y, Lin Y C, Gupta S K, et al. Noncoding Effects of Circular RNA CCDC66 Promote Colon Cancer Growth and Metastasis[J]. Cancer Res, 2017, 77(9):2339-2350 [59] Zhang X L, Xu L L, Wang F. Hsa_circ_0020397 regulates colorectal cancer cell viability, apoptosis, and invasion by promoting the expression of the miR-138 targets TERT and PD-L1[J].Cell Biol Int, 2017, 41(9):1056-1064 [60] Mi B, Xiong Y, Chen L, et al. CircRNA AFF4 promotes osteoblast cells proliferation and inhibits apoptosis via the Mir-7223-5p/PIK3R1 axis[J]. Aging (Albany NY), 2019, 11(24): 11988-12001 [61] Yu J, Xu Q G, Wang Z G, et al. Circular RNA cSMARCA5 inhibits growth and metastasis in hepatocellular carcinoma[J]. J Hepatol, 2018, 68(6): 1214-1227 [62] Wen S, Li S, Li L, et al. circACTR2: A Novel Mechanism Regulating High Glucose-Induced Fibrosis in Renal Tubular Cells via Pyroptosis[J]. Biol Pharm Bull, 2020, 43(3): 558-564 [63] Yan B, Zhang Y, Liang C, et al. Stem cell-derived exosomes prevent pyroptosis and repair ischemic muscle injury through a novel exosome/circHIPK3/ FOXO3a pathway[J]. Theranostics, 2020, 10(15): 6728-6742 [64] Li J X, Zhang Z F, Wang X B, et al. PLZF regulates apoptosis of leukemia cells by regulating AKT/Foxo3a pathway[J]. Eur Rev Med Pharmacol Sci, 2019, 23(15): 6411-6418 [65] Huang Z, Ma W, Xiao J, et al. CircRNA_0092516 regulates chondrocyte proliferation and apoptosis in osteoarthritis through the miR-337-3p/PTEN axis[J]. J Biochem, 2020,mvaa119 [66] 陈伟, 吴仙华, 孙绍光. circRNA相关数据库及其应用[J]. 中国生物化学与分子生物学报(Chen Wei, Wu Xianhua, Sun Shaoguang. circRNA related database and its application[J]. Chin J Biochem Mol Biol), 2019, 35(1): 35-41 [67] Glaar P, Papavasileiou P, Rajewsky N. circBase: a database for circular RNAs[J]. RNA, 2014, 20(11): 1666-1670 [68] Xia S, Feng J, Chen K, et al. CSCD: a database for cancer-specific circular RNAs[J]. Nucleic Acids Res, 2018, 46(D1): D925-D929 [69] Liu Y-C, Li J-R, Sun C-H, et al. CircNet: a database of circular RNAs derived from transcriptome sequencing data[J]. Nucleic Acids Res, 2016, 44(D1): D209-D215 [70] Meng X, Hu D, Zhang P, et al. CircFunBase: a database for functional circular RNAs[J]. Database(Oxford), 2019, 2019:baz003