A Role of TREX1 in Immune Regulation and Human Diseases
ZHANG Si-Tong, DU He-Kang, CHEN Qi*
Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, Fujian Normal University Qishan Campus, Fuzhou 350117, China
Abstract:Three prime repair exonuclease 1 (TREX1), also known as DNase Ⅲ, is a major 3'-5' restriction exonuclease in most of tissues and cell types of the mammals. The exonuclease activity of TREX1 plays an essential role in maintaining the immune tolerance of the innate immune system, which avoids the excessive activation of the innate immune system and massive production of auto-antibodies induced by the abnormal accumulation of cytosolic DNA. cGAS-STING signaling was identified as an important innate immune response to pathogens and maintained cellular environmental homeostasis. TREX1 prevents occasional leakage of nuclear DNA into the cytosol, which activates cGAS and triggers the downstream type I interferons cascade. Mutations of human TREX1 cause a series of autoimmune diseases, such as Aicardi-Goutières syndrome (AGS), Familial chilblain lupus (FCL), Systemic lupus erythematosus (SLE) and Leukodystrophy-related retinopathy (RVCL). Besides, TREX1 inhibits the innate immune response to human immunodeficiency virus type 1 (HIV-1) and plays an important role in mediating the viral immune evasion. Moreover, TREX1 acts as an upstream regulator of the DNA sensing pathway, which maintains tumor immune tolerance and prevents cell senescence. Here, we focus on the immune regulation of TREX1 and demonstrate the role of TREX1 in autoimmune diseases, HIV-1 infection, cancer and cell senescence to provide the basic theoretical guidance for human disease therapy.
张思桐, 杜和康, 陈骐. TREX1介导的免疫调控在疾病中的作用[J]. 中国生物化学与分子生物学报, 2021, 37(11): 1415-1422.
ZHANG Si-Tong, DU He-Kang, CHEN Qi. A Role of TREX1 in Immune Regulation and Human Diseases. Chinese Journal of Biochemistry and Molecular Biol, 2021, 37(11): 1415-1422.
[1] Ablasser A, Hertrich C, Waßermann R, et al. Nucleic acid driven sterile inflammation[J]. Clin Immunol, 2013, 147(3): 207-215
[2] Czarnek M, Bereta J. The CRISPR-Cas system-from bacterial immunity to genome engineering[J]. Postepy Hig Med Dosw (Online), 2016, 70(1): 901-916
[3] Jiang F, Doudna JA. CRISPR-Cas9 structures and mechanisms[J]. Annu Rev Biophys, 2017, 46: 505-529
[4] Sun L, Wu J, Du F, et al. Cyclic GMP-AMP synthase is a cytosolic DNA sensor that activates the type I interferon pathway[J]. Science, 2013, 339(6121): 786-791
[5] Kawai T, Akira S. Toll-like receptors and their crosstalk with other innate receptors in infection and immunity[J]. Immunity, 2011, 34(5): 637-650
[6] Xiao N, Wei J, Xu S, et al. cGAS activation causes lupus-like autoimmune disorders in a TREX1 mutant mouse model[J]. J Autoimmun, 2019, 100(1): 84-94
[7] Gao D, Li T, Li XD, et al. Activation of cyclic GMP-AMP synthase by self-DNA causes autoimmune diseases[J]. Proc Natl Acad Sci U S A, 2015, 112(42): E5699-E5705
[8] Grieves JL, Fye JM, Harvey S, et al. Exonuclease TREX1 degrades double-stranded DNA to prevent spontaneous lupus-like inflammatory disease[J]. Proc Natl Acad Sci U S A, 2015, 112(16): 5117-5122
[9] Rice G, Newman WG, Dean J, et al. Heterozygous mutations in TREX1 cause familial chilblain lupus and dominant Aicardi-Goutieres syndrome[J]. Am J Hum Genet, 2007, 80(4): 811-815
[10] Richards A, van den Maagdenberg A M, Jen JC, et al. C-terminal truncations in human 3'-5' DNA exonuclease TREX1 cause autosomal dominant retinal vasculopathy with cerebral leukodystrophy[J]. Nat Genet, 2007, 39(9): 1068-1070
[11] Yan N. Immune diseases associated with TREX1 and STING dysfunction[J]. J Interferon Cytokine Res, 2017, 37(5): 198-206
[12] Yan N, Regalado-Magdos AD, Stiggelbout B, et al. The cytosolic exonuclease TREX1 inhibits the innate immune response to human immunodeficiency virus type 1[J]. Nat Immunol, 2010, 11(11): 1005-1013
[13] Takahashi A, Loo TM, Okada R, et al. Downregulation of cytoplasmic DNases is implicated in cytoplasmic DNA accumulation and SASP in senescent cells[J]. Nat Commun, 2018, 9(1): 1249
[14] Vanpouille-Box C, Alard A, Aryankalayil MJ, et al. DNA exonuclease Trex1 regulates radiotherapy-induced tumour immunogenicity[J]. Nat Commun, 2017, 8: 15618
[15] Orebaugh CD, Fye JM, Harvey S, et al. The TREX1 C-terminal region controls cellular localization through ubiquitination[J]. J Biol Chem, 2013, 288(40): 28881-28892
[16] Huang KW, Liu TC, Liang RY, et al. Structural basis for overhang excision and terminal unwinding of DNA duplexes by TREX1[J]. PLoS Biol, 2018, 16(5): e2005653
[17] de Silva U, Choudhury S, Bailey SL, et al. The crystal structure of TREX1 explains the 3' nucleotide specificity and reveals a polyproline II helix for protein partnering[J]. J Biol Chem, 2007, 282(14): 10537-10543
[18] Erdal E, Haider S, Rehwinkel J, et al. A prosurvival DNA damage-induced cytoplasmic interferon response is mediated by end resection factors and is limited by Trex1[J]. Genes Dev, 2017, 31(4): 353-369
[19] Wilson R, Espinosa-Diez C, Kanner N, et al. MicroRNA regulation of endothelial TREX1 reprograms the tumour microenvironment[J]. Nat Commun, 2016, 7: 13597
[20] Lee-Kirsch MA, Gong M, Chowdhury D, et al. Mutations in the gene encoding the 3'-5' DNA exonuclease TREX1 are associated with systemic lupus erythematosus[J]. Nat Genet, 2007, 39(9): 1065-1067
[21] Gray EE, Treuting PM, Woodward JJ, et al. Cutting edge: cGAS is required for lethal autoimmune disease in the Trex1-deficient mouse model of aicardi-goutières syndrome[J]. J Immunol, 2015, 195(5): 1939-1943
[22] Fye JM, Orebaugh CD, Coffin SR, et al. Dominant mutation of the TREX1 exonuclease gene in lupus and Aicardi-Goutieres syndrome[J]. J Biol Chem, 2011, 286(37): 32373-32382
[23] Cai X, Chiu YH, Chen ZJ. The cGAS-cGAMP-STING pathway of cytosolic DNA sensing and signaling[J]. Mol Cell, 2014, 54(2): 289-296
[24] Chui D, Sellakumar G, Green R, et al. Genetic remodeling of protein glycosylation in vivo induces autoimmune disease[J]. Proc Natl Acad Sci U S A, 2001, 98(3): 1142-1147
[25] Green RS, Stone EL, Tenno M, et al. Mammalian N-glycan branching protects against innate immune self-recognition and inflammation in autoimmune disease pathogenesis[J]. Immunity, 2007, 27(2): 308-320
[26] Hasan M, Fermaintt CS, Gao N, et al. Cytosolic nuclease TREX1 regulates oligosaccharyltransferase activity independent of nuclease activity to suppress immune activation[J]. Immunity, 2015, 43(3): 463-474
[27] Osorio F, Reis e Sousa C. Myeloid C-type lectin receptors in pathogen recognition and host defense[J]. Immunity, 2011, 34(5): 651-664
[28] Parikh UM, McCormick K, van Zyl G, et al. Future technologies for monitoring HIV drug resistance and cure[J]. Curr Opin HIV AIDS, 2017, 12(2): 182-189
[29] Fanales-Belasio E, Raimondo M, Suligoi B, et al. HIV virology and pathogenetic mechanisms of infection: a brief overview[J]. Ann Ist Super Sanita, 2010, 46(1): 5-14
[30] Luban J. Innate immune sensing of HIV-1 by dendritic cells[J]. Cell Host Microbe, 2012, 12(4): 408-418
[31] Manches O, Frleta D, Bhardwaj N. Dendritic cells in progression and pathology of HIV infection[J]. Trends Immunol, 2014, 35(3): 114-122
[32] Kumar S, Morrison JH, Dingli D, et al. HIV-1 activation of innate immunity depends strongly on the intracellular level of TREX1 and sensing of incomplete reverse transcription products[J]. J Virol, 2018, 92(16): e00001-18
[33] Gao D, Wu J, Wu YT, et al. Cyclic GMP-AMP synthase is an innate immune sensor of HIV and other retroviruses[J]. Science, 2013, 341(6148): 903-906
[34] Sumner RP, Harrison L, Touizer E, et al. Disrupting HIV-1 capsid formation causes cGAS sensing of viral DNA[J]. EMBO J, 2020, 39(20): e103958
[35] Härtlova A, Erttmann SF, Raffi FA, et al. DNA damage primes the type I interferon system via the cytosolic DNA sensor STING to promote anti-microbial innate immunity[J]. Immunity, 2015, 42(2): 332-343
[36] Fuertes MB, Kacha AK, Kline J, et al. Host type I IFN signals are required for antitumor CD8+ T cell responses through CD8{alpha}+ dendritic cells[J]. J Exp Med, 2011, 208(10): 2005-2016
[37] Diamond MS, Kinder M, Matsushita H, et al. Type I interferon is selectively required by dendritic cells for immune rejection of tumors[J]. J Exp Med, 2011, 208(10): 1989-2003
[38] Twyman-Saint Victor C, Rech AJ, Maity A, et al. Radiation and dual checkpoint blockade activate non-redundant immune mechanisms in cancer[J]. Nature, 2015, 520(7547): 373-377
[39] Deng L, Liang H, Xu M, et al. STING-dependent cytosolic DNA sensing promotes radiation-induced type I interferon-dependent antitumor immunity in immunogenic tumors[J]. Immunity, 2014, 41(5): 843-852
[40] Woo SR, Fuertes MB, Corrales L, et al. STING-dependent cytosolic DNA sensing mediates innate immune recognition of immunogenic tumors[J]. Immunity, 2014, 41(5): 830-842
[41] Singh T, Newman AB. Inflammatory markers in population studies of aging[J]. Ageing Res Rev, 2011, 10(3): 319-329
[42] Rübe CE, Fricke A, Widmann T A, et al. Accumulation of DNA damage in hematopoietic stem and progenitor cells during human aging[J]. PLoS One, 2011, 6(3): e17487
[43] Le ON, Rodier F, Fontaine F, et al. Ionizing radiation-induced long-term expression of senescence markers in mice is independent of p53 and immune status[J]. Aging Cell, 2010, 9(3): 398-409
[44] Glück S, Guey B, Gulen MF, et al. Innate immune sensing of cytosolic chromatin fragments through cGAS promotes senescence[J]. Nat Cell Biol, 2017, 19(9): 1061-1070
[45] Yang H, Wang H, Ren J, et al. cGAS is essential for cellular senescence[J]. Proc Natl Acad Sci U S A, 2017, 114(23): E4612-E4620
[46] Yu Q, Katlinskaya YV, Carbone CJ, et al. DNA-damage-induced type I interferon promotes senescence and inhibits stem cell function[J]. Cell Rep, 2015, 11(5): 785-797
[47] Lan YY, Heather JM, Eisenhaure T, et al. Extranuclear DNA accumulates in aged cells and contributes to senescence and inflammation[J]. Aging Cell, 2019, 18(2): e12901
[48] De Cecco M, Ito T, Petrashen AP, et al. L1 drives IFN in senescent cells and promotes age-associated inflammation[J]. Nature, 2019, 566(7742): 73-78
[49] Mackenzie KJ, Carroll P, Martin CA, et al. cGAS surveillance of micronuclei links genome instability to innate immunity[J]. Nature, 2017, 548(7668): 461-465
[50] Mohr L, Chu K, Maciejowski J. TREX1-induced chromosome fragmentation at the interface of innate immunity and genomic instability[J]. J Immunol, 2020, 204(1 Suppl): 162.5
[51] Mohr L, Toufektchan E, von Morgen P, et al. ER-directed TREX1 limits cGAS activation at micronuclei[J]. Mol Cell, 2021, 81(4): 724-738.e9
[52] Achleitner M, Kleefisch M, Hennig A, et al. Lack of Trex1 causes systemic autoimmunity despite the presence of antiretroviral drugs[J]. J Immunol, 2017, 199(7): 2261-2269
[53] Gall A, Treuting P, Elkon KB, et al. Autoimmunity initiates in nonhematopoietic cells and progresses via lymphocytes in an interferon-dependent autoimmune disease[J]. Immunity, 2012, 36(1): 120-131
[54] Ablasser A, Hemmerling I, Schmid-Burgk JL, et al. TREX1 deficiency triggers cell-autonomous immunity in a cGAS-dependent manner[J]. J Immunol, 2014, 192(12): 5993-5997
[55] Lama L, Adura C, Xie W, et al. Development of human cGAS-specific small-molecule inhibitors for repression of dsDNA-triggered interferon expression[J]. Nat Commun, 2019, 10(1): 2261
[56] Dai J, Huang YJ, He X, et al. Acetylation blocks cGAS activity and inhibits Self-DNA-induced autoimmunity[J]. Cell, 2019, 176(6): 1447-1460.e14
[57] Li S, Hong Z, Wang Z, et al. The cyclopeptide Astin C specifically inhibits the innate immune CDN sensor STING[J]. Cell Rep, 2018, 25(12): 3405-3421.e7
[58] Haag SM, Gulen MF, Reymond L, et al. Targeting STING with covalent small-molecule inhibitors[J]. Nature, 2018, 559(7713): 269-273
[59] Sharma P, Allison JP. The future of immune checkpoint therapy[J]. Science, 2015, 348(6230): 56-61
[60] Robijns J, Houthaeve G, Braeckmans K, et al. Loss of nuclear envelope integrity in aging and disease[J]. Int Rev Cell Mol Biol, 2018, 336: 205-222