Peptide Drugs Targeting G Protein-coupled Receptors
ZHAO Yan-Jie1), SU Wei-Jun2), LI Shuai1)*
1)Department of Breast Cancer Pathology and Research Laboratory, Tianjin Medical University Cancer Institute and Hospital; National Clinical Research Center of Cancer; Key Laboratory of Cancer Prevention and Therapy, Tianjin; Tianjin's Clinical Research Center for Cancer; Key Laboratory of Breast Cancer Prevention and Therapy, Ministry of Education, Tianjin 300060, China; 2)Department of Pathology, School of Medicine, Nankai University, Tianjin 300071, China
Abstract:G protein-coupled receptors (GPCRs) are the largest family of cell surface receptors in mammals that contain seven transmembrane helices. The human genome encodes about 800 different types of GPCRs, which are widely involved in the pathological processes underlying different diseases, e.g. metabolic diseases and tumors, rendering them popular therapeutic targets. Peptides are organic substances consisted of two to dozens of amino acids linked by peptide bonds. They are bioactive substances involved in various cellular activities. To date, over 7 000 natural peptides have been identified as hormones, neurotransmitters, growth factors, ion channel ligands and antibiotics. Peptide drugs are valued for being selective and efficacious, and at the same time relatively safe and with low costs of production. In recent years, based on the increased understanding of GPCR structures, the development of GPCR-targeting peptide drugs has made great progress. Up to now, there have been nearly 50 peptide drugs targeting GPCRs approved by FDA for the treatment of metabolic diseases, nervous system diseases, cancer or other diseases. The research and development of peptide drugs have gone through three stages: development based on human peptides, on natural peptides and by modern biotechnology. At present, most of the marketed GPCR-targeting peptide drugs are derivatives of human natural peptides. In this review, we sum up the recent marketed GPCR-targeting peptide drugs, and also summarize the current strategies and further directions of peptide drug development.
赵雁杰, 苏位君, 李帅. 靶向G蛋白偶联受体的肽类药物[J]. 中国生物化学与分子生物学报, 2021, 37(7): 837-846.
ZHAO Yan-Jie, SU Wei-Jun, LI Shuai. Peptide Drugs Targeting G Protein-coupled Receptors. Chinese Journal of Biochemistry and Molecular Biol, 2021, 37(7): 837-846.
[1] Insel PA, Sriram K, Gorr MW, et al. GPCRomics: an approach to discover GPCR drug targets [J]. Trends Pharmacol Sci, 2019, 40(6): 378-387
[2] Fosgerau K, Hoffmann T. Peptide therapeutics: current status and future directions [J]. Drug Discov Today, 2015, 20(1): 122-128
[3] Lee AC, Harris JL, Khanna KK, et al. A comprehensive review on current advances in peptide drug development and design [J]. Int J Mol Sci, 2019, 20(10): 2383
[4] García-Escobar E, Rodríguez-Pacheco F, Haro-Mora JJ, et al. Effect of insulin analogues on 3t3-l1 adipogenesis and lipolysis [J]. Eur J Clin Invest, 2011, 41(9): 979-986
[5] Tokarz VL, MacDonald PE, Klip A. The cell biology of systemic insulin function [J]. J Cell Biol, 2018, 217(7): 2273-2289
[6] Gimpl G, Fahrenholz F. The oxytocin receptor system: structure, function, and regulation [J]. Physiol Rev, 2001, 81(2): 629-683
[7] 苟佳佳,李靖柯,李硕. G蛋白偶联受体及其靶向药物研究 [J]. 中国药房(Gou JJ, Li JK, Li S. Study on G protein-coupled receptor and its targeted drugs [J]. J China Pharm), 2018, 29(19): 2728-2732
[8] Wacker D, Stevens RC, Roth BL. How ligands illuminate GPCR molecular pharmacology [J]. Cell, 2017, 170(3): 414-427
[9] Heng BC, Aubel D, Fussenegger M. G protein-coupled receptors revisited: therapeutic applications inspired by synthetic biology [J]. Annu Rev Pharmacol Toxicol, 2014, 54: 227-249
[10] Yang Z, Yang F, Zhang D, et al. Phosphorylation of G protein-coupled receptors: from the barcode hypothesis to the flute model [J]. Mol Pharmacol, 2017, 92(3): 201-210
[11] Nguyen AH, Thomsen ARB, Cahill TJ 3rd, et al. Structure of an endosomal signaling GPCR-G protein-β- arrestin megacomplex [J]. Nat Struct Mol Biol, 2019, 26(12): 1123-1131
[12] Mores KL, Cassell RJ, Van Rijn RM. Arrestin recruitment and signaling by G protein-coupled receptor heteromers [J]. Neuropharmacology, 2019, 152: 15-21
[13] Lee Y, Warne T, Nehmé R, et al. Molecular basis of β-arrestin coupling to formoterol-bound β1-adrenoceptor [J]. Nature, 2020, 583(7818): 862-866
[14] Sun SZ, Cao H, Yao N, et al. β-Arrestin 2 mediates arginine vasopressin-induced IL-6 induction via the ERK1/2-NF-κB signal pathway in murine hearts [J]. Acta pharmacol Sin, 2020, 41(2): 198-207
[15] Lau JL, Dunn MK. Therapeutic peptides: Historical perspectives, current development trends, and future directions [J]. Bioorg Med Chem, 2018, 26(10): 2700-2707
[16] Henninot A, Collins JC, Nuss JM. The current state of peptide drug discovery: back to the future? [J]. J Med Chem, 2018, 61(4): 1382-1414
[17] Erak M, Bellmann-Sickert K, Els-Heindl S, et al. Peptide chemistry toolbox - transforming natural peptides into peptide therapeutics [J]. Bioorg Med Chem, 2018, 26(10): 2759-2765
[18] Davenport AP, Scully CCG, De Graaf C, et al. Advances in therapeutic peptides targeting G protein-coupled receptors [J]. Nat Rev Drug Discov, 2020, 19(6): 389-413
[19] Pennington MW, Czerwinski A, Norton RS. Peptide therapeutics from venom: Current status and potential [J]. Bioorg Med Chem, 2018, 26(10): 2738-2758
[20] Smith GP. Filamentous fusion phage: novel expression vectors that display cloned antigens on the virion surface [J]. Science, 1985, 228(4705): 1315-1317
[21] Scott JK, Smith GP. Searching for peptide ligands with an epitope library[J].Science,1990,249(4967): 386-390
[22] Obexer R, Walport LJ, Suga H. Exploring sequence space: harnessing chemical and biological diversity towards new peptide leads [J]. Curr Opin Chem Biol, 2017, 38(1): 52-61
[23] Zhang H, Sturchler E, Zhu J, et al. Autocrine selection of a GLP-1R G-protein biased agonist with potent antidiabetic effects [J]. Nat Commun, 2015, 6: 8918
[24] Zhang H, Xie J, Lerner RA. A proximity based general method for identification of ligand and receptor interactions in living cells [J]. Biochem Biophys Res Commun, 2014, 454(1): 251-255
[25] Zhang H, Du M, Xie J, et al. Autocrine-based selection of drugs that target ion channels from combinatorial venom peptide libraries [J]. Angew Chem Int Ed Engl, 2016, 55(32): 9306-9310
[26] Tomas A, Jones B, Leech C. New insights into beta-cell GLP-1 receptor and cAMP signaling [J]. J Mol Biol, 2020, 432(5): 1347-1366
[27] Knerr PJ, Finan B, Gelfanov V, et al. Optimization of peptide-based polyagonists for treatment of diabetes and obesity [J]. Bioorg Med Chem, 2018, 26(10): 2873-2881
[28] Brown E, Cuthbertson DJ, Wilding JP. Newer GLP-1 receptor agonists and obesity-diabetes [J]. Peptides, 2018, 100: 61-67
[29] Eng J, Kleinman WA, Singh L, et al. Isolation and characterization of exendin-4, an exendin-3 analogue, from Heloderma suspectum venom. Further evidence for an exendin receptor on dispersed acini from guinea pig pancreas [J]. J Biol Chem, 1992, 267(11): 7402-7405
[30] Knop FK, Bronden A, Vilsboll T. Exenatide: pharmacokinetics, clinical use, and future directions [J]. Expert Opin Pharmacother, 2017, 18(6): 555-571
[31] Yap MKK, Misuan N. Exendin-4 from Heloderma suspectum venom: from discovery to its latest application as type II diabetes combatant [J]. Basic Clin Pharmacol Toxicol, 2019, 124(5): 513-527
[32] Parkes DG, Mace KF, Trautmann ME. Discovery and development of exenatide: the first antidiabetic agent to leverage the multiple benefits of the incretin hormone, GLP-1[J].Expert Opin Drug Discov, 2013, 8(2): 219-244
[33] Gallwitz B, Böhmer M, Segiet T, et al. Exenatide twice daily versus premixed insulin aspart 70/30 in metformin-treated patients with type 2 diabetes: a randomized 26-week study on glycemic control and hypoglycemia [J]. Diabetes Care, 2011, 34(3): 604-606
[34] Leon N, LaCoursiere R, Yarosh D, et al. Lixisenatide (Adlyxin): A once-daily incretin mimetic injection for type-2 diabetes [J]. P T, 2017, 42(11): 676-711
[35] Knudsen LB, Lau J. The discovery and development of liraglutide and semaglutide [J]. Front Endocrinol (Lausanne), 2019, 10: 155
[36] Nuffer WA, Trujillo JM. Liraglutide: A new option for the treatment of obesity [J]. Pharmacotherapy, 2015, 35(10): 926-934
[37] Rendell MS. Albiglutide: a unique GLP-1 receptor agonist[J].Expert Opin Biol Ther, 2016, 16(12): 1557-1569
[38] Hedrington MS, Davis SN. Oral semaglutide for the treatment of type 2 diabetes [J]. Expert Opin Pharmacother, 2019, 20(2): 133-141
[39] Brubaker PL. Glucagon-like peptide-2 and the regulation of intestinal growth and function [J]. Compr Physiol, 2018, 8(3): 1185-1210
[40] Kochar B, Herfarth HH. Teduglutide for the treatment of short bowel syndrome - a safety evaluation [J]. Expert Opin Drug Saf, 2018, 17(7): 733-739
[41] Fretzen A. Peptide therapeutics for the treatment of gastrointestinal disorders [J]. Bioorg Med Chem, 2018, 26 (10): 2863-2872
[42] Jeppesen PB. Teduglutide, a novel glucagon-like peptide 2 analog, in the treatment of patients with short bowel syndrome [J]. Therap Adv Gastroenterol, 2012, 5(3): 159-171
[43] Ardura JA, Portal-Nunez S, Alonso V, et al. Handling parathormone receptor type 1 in skeletal diseases: realities and expectations of abaloparatide [J]. Trends Endocrinol Metab, 2019, 30(10): 756-766
[44] Sahbani K, Cardozo CP, Bauman WA, et al. Abaloparatide exhibits greater osteoanabolic response and higher cAMP stimulation and β-arrestin recruitment than teriparatide [J]. Physiol Rep, 2019, 7(19): e14225
[45] 杨照,肖鹏,于晓,孙金鹏. G蛋白偶联受体的信号通路多样性及药物开发 [J]. 中国科学:生命科学(Yang Z, Xiao P, Yu X, et al. Signal pathway diversity of G protein-coupled receptors and drug development [J]. Sci Sin Vitae), 2018, 48(11): 1238-1244
[46] Le Joncour V, Laakkonen P. Seek & Destroy, use of targeting peptides for cancer detection and drug delivery [J]. Bioorg Med Chem, 2018, 26(10): 2797-2806
[47] Rai U, Thrimawithana TR, Valery C, et al. Therapeutic uses of somatostatin and its analogues: Current view and potential applications [J]. Pharmacol Ther, 2015, 152(1): 98-110
[48] Fleseriu M, Petersenn S, Biller BMK, et al. Long-term efficacy and safety of once-monthly pasireotide in Cushing’s disease: A phase III extension study [J]. Clin Endocrinol(Oxf), 2019, 91(6): 776-785
[49] Feelders RA, Newell-Price J, Pivonello R, et al. Advances in the medical treatment of Cushing’s syndrome [J]. Lancet Diabetes Endocrinol, 2019, 7(4): 300-312
[50] McArdle CA. Gonadotropin-releasing hormone receptor signaling: biased and unbiased [J]. Mini Rev Med Chem, 2012, 12(9): 841-850
[51] Wilson AC, Meethal SV, Bowen RL, et al. Leuprolide acetate: a drug of diverse clinical applications [J]. Expert Opin Investig Drugs, 2007, 16(11): 1851-1863
[52] Plosker GL, Brogden RN. Leuprorelin. A review of its pharmacology and therapeutic use in prostatic cancer, endometriosis and other sex hormone-related disorders [J]. Drugs, 1994, 48(6): 930-967
[53] Huirne JA, Lambalk CB. Gonadotropin-releasing-hormone-receptor antagonists [J]. Lancet, 2001, 358(9295): 1793-1803
[54] Carter NJ, Keam SJ. Degarelix: a review of its use in patients with prostate cancer [J]. Drugs, 2014, 74(6): 699-712
[55] Jiang G, Stalewski J, Galyean R, et al. GnRH antagonists: a new generation of long acting analogues incorporating p-ureido-phenylalanines at positions 5 and 6 [J]. J Med Chem, 2001, 44(3): 453-467
[56] Cucchiara V, Yang JC, Liu C, et al. GnRH antagonists have direct inhibitory effects on castration-resistant prostate cancer via intracrine androgen and AR-V7 expression [J]. Mol Cancer Ther, 2019, 18(10): 1811-1821
[57] Maybauer MO, Maybauer DM, Enkhbaatar P, et al. Physiology of the vasopressin receptors [J]. Best Pract Res Clin Anaesthesiol, 2008, 22(2): 253-263
[58] Zingg HH. Vasopressin and oxytocin receptors [J]. Baillieres Clin Endocrinol Metab, 1996, 10(1): 75-96
[59] Iovino M, Iacoviello M, De Pergola G, et al. Vasopressin in heart failure [J]. Endocr Metab Immune Disord Drug Targets, 2018, 18(5): 458-465
[60] Arrowsmith S, Wray S. Oxytocin: its mechanism of action and receptor signalling in the myometrium [J]. J Neuroendocrinol, 2014, 26(6): 356-369
[61] Pierzynski P. Oxytocin and vasopressin V(1A) receptors as new therapeutic targets in assisted reproduction [J]. Reprod Biomed Online, 2011, 22(1): 9-16
[62] Kaufmann JE, Oksche A, Wollheim CB, et al. Vasopressin-induced von Willebrand factor secretion from endothelial cells involves V2 receptors and cAMP [J]. J Clin Invest, 2000, 106(1): 107-116
[63] Meshykhi LS, Nel MR, Lucas DN. The role of carbetocin in the prevention and management of postpartum haemorrhage [J]. Int J Obstet Anesth, 2016, 28: 61-69
[64] Fralick M, Kesselheim AS. FDA approval of desmopressin for nocturia [J]. JAMA, 2017, 317(20): 2059-2060
[65] Centeno PP, Herberger A, Mun HC, et al. Phosphate acts directly on the calcium-sensing receptor to stimulate parathyroid hormone secretion [J]. Nat Commun, 2019, 10(1): 4693
[66] Bushinsky DA, Chertow GM, Cheng S, et al. One-year safety and efficacy of intravenous etelcalcetide in patients on hemodialysis with secondary hyperparathyroidism[J]. Nephrol Dial Transplant, 2020, 35(10): 1769- 1778
[67] Eidman KE, Wetmore JB. Treatment of secondary hyperparathyroidism: How do cinacalcet and etelcalcetide differ? [J]. Semin Dial, 2018, 31(5): 440-444
[68] Li S, Su W, Zhang C. Linear double-stranded DNAs as innovative biological parts to implement genetic circuits in mammalian cells [J]. FEBS J, 2019, 286(12): 2341-2354