Abstract:N6-methyladenosine(m6A) is a methylation modification that occurs in the N6 position of adenine, which is the most prevalent post-transcriptional modification in eukaryotic messenger RNAs (mRNAs). m6A modification is a dynamic and reversible process regulated by methyltransferase, demethylase, and m6A-binding proteins. It affects all stages of the mRNA life cycle, including stabilization, splicing, nuclear transport, translation and decay. In recent years, it has been reported that continuous dynamic regulation of m6A plays an essential role in cardiovascular diseases, including atherosclerosis, myocardial ischemia-reperfusion injury, myocardial hypertrophy, heart failure, hypertension and abdominal aortic aneurysm. In this review, we summarize the mechanism of m6A methylation and the latest research progress of m6A in cardiovascular diseases. Moreover, we focus on the m6A-associated sing-nucleotide polymorphisms in cardiovascular diseases, so as to provide new ideas and ways for the prevention and treatment of cardiovascular diseases.
徐晓芳,李荣,周玉生. m6A RNA甲基化修饰在心血管疾病中的作用[J]. 中国生物化学与分子生物学报, 2021, 37(5): 564-572.
XU Xiao-Fang, LI Rong, ZHOU Yu-Sheng. The Role of RNA N6-Methyladenosine Modification in Cardiovascular Diseases. Chinese Journal of Biochemistry and Molecular Biol, 2021, 37(5): 564-572.
[1] Virani SS, Alonso A, Benjamin EJ, et al. Heart Disease and Stroke Statistics-2020 Update: A Report From the American Heart Association[J]. Circulation, 2020, 141(9): e139-e596
[2] Zhang W, Song M, Qu J, et al. Epigenetic Modifications in Cardiovascular Aging and Diseases[J]. Circ Res, 2018, 123(7): 773-786
[3] Desrosiers R, Friderici K, Rottman F. Identification of methylated nucleosides in messenger RNA from Novikoff hepatoma cells[J]. Proc Natl Acad Sci U S A, 1974, 71(10): 3971-3975
[4] Meyer KD, Saletore Y, Zumbo P, et al. Comprehensive analysis of mRNA methylation reveals enrichment in 3' UTRs and near stop codons[J]. Cell, 2012, 149(7): 1635-1646
[5] Liu J, Yue Y, Han D, et al. A METTL3-METTL14 complex mediates mammalian nuclear RNA N6-adenosine methylation[J]. Nat Chem Biol, 2014, 10(2): 93-95
[6] Wang P, Doxtader KA, Nam Y. Structural Basis for Cooperative Function of Mettl3 and Mettl14 Methyltransferases[J]. Mol Cell, 2016, 63(2): 306-317
[7] Wang X, Feng J, Xue Y, et al. Structural basis of N(6)-adenosine methylation by the METTL3-METTL14 complex[J]. Nature, 2016, 534(7608): 575-578
[8] Ping XL, Sun BF, Wang L, et al. Mammalian WTAP is a regulatory subunit of the RNA N6-methyladenosine methyltransferase[J]. Cell Res, 2014, 24(2): 177-189
[9] Horiuchi K, Kawamura T, Iwanari H, et al. Identification of Wilms' tumor 1-associating protein complex and its role in alternative splicing and the cell cycle[J]. J Bio Chem, 2013, 288(46): 33292-33302
[10] Jia G, Fu Y, Zhao X, et al. N6-methyladenosine in nuclear RNA is a major substrate of the obesity-associated FTO[J]. Nat Chem Biol, 2011, 7(12): 885-887
[11] Zheng G, Dahl JA, Niu Y, et al. ALKBH5 is a mammalian RNA demethylase that impacts RNA metabolism and mouse fertility[J]. Mol Cell, 2013, 49(1): 18-29
[12] Mauer J, Luo X, Blanjoie A, et al. Reversible methylation of m(6)Am in the 5' cap controls mRNA stability[J]. Nature, 2017, 541(7637): 371-375
[13] Linder B, Grozhik AV, Olarerin-George AO, et al. Single-nucleotide-resolution mapping of m6A and m6Am throughout the transcriptome[J]. Nat Methods, 2015, 12(8): 767-772
[14] Liao S, Sun H, Xu C. YTH Domain: A Family of N-methyladenosine (mA) Readers[J]. Genomics Proteomics Bioinformatics, 2018, 16(2): 99-107
[15] Wang X, Lu Z, Gomez A, et al. N6-methyladenosine-dependent regulation of messenger RNA stability[J]. Nature, 2013, 505(7481): 117-120
[16] Dominissini D, Moshitch-Moshkovitz S, Schwartz S, et al. Topology of the human and mouse m6A RNA methylomes revealed by m6A-seq[J]. Nature, 2012, 485(7397): 201-206
[17] Herrington W, Lacey B, Sherliker P, et al. Epidemiology of Atherosclerosis and the Potential to Reduce the Global Burden of Atherothrombotic Disease[J]. Circ Res. 2016, 118(4): 535-546
[18] Quiles-Jiménez A, Gregersen I, Mittelstedt Leal de Sousa M, et al. N6-methyladenosine in RNA of atherosclerotic plaques: An epitranscriptomic signature of human carotid atherosclerosis[J]. Biochem Biophys Res Commun, 2020, S0006-291X(20): 31798-8
[19] Jian D, Wang Y, Jian L, et al. METTL14 aggravates endothelial inflammation and atherosclerosis by increasing FOXO1 N6-methyladeosine modifications[J]. Theranostics. 2020, 10(20): 8939-8956
[20] Zhang BY, Han L, Tang YF, et al. METTL14 regulates M6A methylation-modified primary miR-19a to promote cardiovascular endothelial cell proliferation and invasion[J]. Eur Rev Med Pharmacol Sci, 2020, 24(12): 7015-7023
[21] Park MH, Jeong E, Choudhury M. Mono-(2-Ethylhexyl)phthalate Regulates Cholesterol Efflux via MicroRNAs Regulated m(6)A RNA Methylation[J]. Chem Res Toxicol, 2020, 33(2): 461-469
[22] Liu Y, Liu Z, Tang H, et al. The N6-methyladenosine (m6A)-forming enzyme METTL3 facilitates M1 macrophage polarization through the methylation of STAT1 mRNA[J]. Am J Physiol Cell Physiol, 2019, 317(4): C762-C775
[23] Huangfu N, Zheng W, Xu Z, et al. RBM4 regulates M1 macrophages polarization through targeting STAT1-mediated glycolysis[J]. Int Immunopharmacol, 2020, 83: 106432
[24] Gu X, Zhang Y, Li D, et al. N6-methyladenosine demethylase FTO promotes M1 and M2 macrophage activation[J]. Cell Signal, 2020, 69: 109553
[25] Yu R, Li Q, Feng Z, et al. m6A Reader YTHDF2 Regulates LPS-Induced Inflammatory Response[J]. Int J Mol Sci, 2019, 20(6): 1323
[26] Wang J, Yan S, Lu H, et al. METTL3 Attenuates LPS-Induced Inflammatory Response in Macrophages via NF-kappaB Signaling Pathway[J]. Mediators Inflamm, 2019, 2019: 3120391
[27] Guo M, Yan R, Ji Q, et al. IFN regulatory Factor-1 induced macrophage pyroptosis by modulating m6A modification of circ_0029589 in patients with acute coronary syndrome[J]. Int Immunopharmacol, 2020, 86: 106800
[28] Zhu B, Gong Y, Shen L, et al. Total Panax notoginseng saponin inhibits vascular smooth muscle cell proliferation and migration and intimal hyperplasia by regulating WTAP/p16 signals via m(6)A modulation[J]. Biomed Pharmacother, 2020, 124: 109935
[29] Durham AL, Speer MY, Scatena M, et al. Role of smooth muscle cells in vascular calcification: implications in atherosclerosis and arterial stiffness[J]. Cardiovasc Res, 2018, 114(4): 590-600
[30] Chen J, Ning Y, Zhang H, et al. METTL14-dependent m6A regulates vascular calcification induced by indoxyl sulfate[J]. Life Sci, 2019, 239: 117034
[31] Ibanez B, Heusch G, Ovize M, et al. Evolving therapies for myocardial ischemia/reperfusion injury[J]. J Am Coll Cardiol, 2015, 65(14): 1454-1471
[32] Wu D, Zhang K, Hu P. The Role of Autophagy in Acute Myocardial Infarction[J]. Front Pharmacol, 2019, 10: 551
[33] 王懿峥,陈扬,俞立. 自噬的前世今生[J]. 中国生物化学与分子生物学报(Wang YZ, Chen Y, Yu L. The Discovery and Research of Autophay[J]. Chin J Biochem Mol Biol), 2018, 34(3): 229-239
[34] Song H, Feng X, Zhang H, et al. METTL3 and ALKBH5 oppositely regulate m(6)A modification of TFEB mRNA, which dictates the fate of hypoxia/reoxygenation-treated cardiomyocytes[J]. Autophagy, 2019, 15(8): 1419-1437
[35] Mathiyalagan P, Adamiak M, Mayourian J, et al. FTO-Dependent N(6)-Methyladenosine Regulates Cardiac Function During Remodeling and Repair[J]. Circulation, 2019, 139(4): 518-532
[36] Yang C, Fan Z, Yang J. m(6)A modification of LncRNA MALAT1: A novel therapeutic target for myocardial ischemia-reperfusion injury[J]. Int J Cardiol, 2020, 306: 162
[37] Saxena R, Weintraub NL, Tang Y. Optimizing cardiac ischemic preconditioning and postconditioning via epitranscriptional regulation[J]. Med Hypotheses, 2020, 135: 109451
[38] Taylor CJ, Moore J, O'Flynn N. Diagnosis and management of chronic heart failure: NICE guideline update 2018[J]. Br J Gen Pract, 2019, 69(682): 265-266
[39] Kmietczyk V, Riechert E, Kalinski L, et al. m(6)A-mRNA methylation regulates cardiac gene expression and cellular growth[J]. Life Sci Alliance, 2019, 2(2): e201800233
[40] Dorn LE, Lasman L, Chen J, et al. The N(6)-Methyladenosine mRNA Methylase METTL3 Controls Cardiac Homeostasis and Hypertrophy[J]. Circulation, 2019, 139(4): 533-545
[41] 孟祥雯,张雪洁,张波, 等. 多柔比星体内外对心肌甲基化转移酶3依赖的m6A RNA甲基化修饰的影响[J]. 中国药理学与毒理学杂志(Meng XW, Zhang XJ, Zhang B, et al. Doxorubicin affects myocardial methyltransferase like 3-dependent m6A RNA methylation modification in vivo and in vitro [J]. Chin J Pharmacol Toxicol), 2018, 32(12): 930-937
[42] Berulava T, Buchholz E, Elerdashvili V, et al. Changes in m6A RNA methylation contribute to heart failure progression by modulating translation[J]. Eur J Heart Fail, 2020, 22(1): 54-66
[43] Kunes J, Zicha J. The interaction of genetic and environmental factors in the etiology of hypertension[J]. Physiol Res, 2009, 58 Suppl 2: S33-41
[44] Kokubo Y, Padmanabhan S, Iwashima Y, et al. Gene and environmental interactions according to the components of lifestyle modifications in hypertension guidelines[J]. Environ Health Prev Med, 2019, 24(1): 19
[45] Wu Q, Yuan X, Han R, et al. Epitranscriptomic mechanisms of N6-methyladenosine methylation regulating mammalian hypertension development by determined spontaneously hypertensive rats pericytes[J]. Epigenomics, 2019, 11(12): 1359-1370
[46] Wu N, Jin L, Cai J. Profiling and bioinformatics analyses reveal differential circular RNA expression in hypertensive patients[J]. Clin Exp Hypertens, 2017, 39(5): 454-459
[47] Su H, Wang G, Wu L, et al. Transcriptome-wide map of m(6)A circRNAs identified in a rat model of hypoxia mediated pulmonary hypertension[J]. BMC Genomics, 2020, 21(1): 39
[48] Thompson RW. Basic science of abdominal aortic aneurysms: emerging therapeutic strategies for an unresolved clinical problem[J]. Curr Opin Cardiol, 1996, 11(5): 504-518
[49] He Y, Xing J, Wang S, et al. Increased m6A methylation level is associated with the progression of human abdominal aortic aneurysm[J]. Ann Transl Med, 2019, 7(24): 797
[50] Zhong L, He X, Song H, et al. METTL3 Induces AAA Development and Progression by Modulating N6-Methyladenosine-Dependent Primary miR34a Processing[J]. Mol Ther Nucleic Acids, 2020, 21: 394-411
[51] Jiang S, Xie Y, He Z, et al. m6ASNP: a tool for annotating genetic variants by m6A function[J]. GigaScience, 2018, 7(5): giy035
[52] Mo X, Lei S, Zhang Y, et al. Genome-wide enrichment of m(6)A-associated single-nucleotide polymorphisms in the lipid loci[J]. Pharmacogenomics J, 2019, 19(4): 347-357
[53] Mo XB, Lei SF, Zhang YH, et al. Detection of mA-associated SNPs as potential functional variants for coronary artery disease[J]. Epigenomics, 2018, 10(10): 1279-1287
[54] Mo X, Zhang H, Lei S, et al. Putative functional SNPs in SLC22A3 and H3F3B might influence the development of CAD by regulating the lipid levels[J]. Thromb Res, 2018, 168: 37-39
[55] Mo XB, Lei SF, Zhang YH, et al. Examination of the associations between m(6)A-associated single-nucleotide polymorphisms and blood pressure[J]. Hypertens Res, 2019, 42(10): 1582-1589
[56] Meyer TE, Shiffman D, Morrison AC, et al. GOSR2 Lys67Arg is associated with hypertension in whites[J]. Am J Hypertens, 2009, 22(2): 163-168
[57] Jakobi T, Siede D, Eschenbach J, et al. Deep Characterization of Circular RNAs from Human Cardiovascular Cell Models and Cardiac Tissue[J]. Cells. 2020, 9(7): 1616