(1)Department of Biochemistry and Biophysics, Peking University Health Science Center, Beijing 100191, China;2)National Center for Nanoscience and Technology, Beijing 100190, China)
Dynamic ubiquitination in eukaryotes either enters proteins into the 26S proteasome degradation pathway or functions in signal transduction, and therefore regulates protein stability, localization and activity, thus participates in transcription, cell cycle, inflammation, tumor, immunity and other functions. Ubiquitination modification is a reversible process, which is regulated by ubiquitin ligases (E3s) and deubiquitylases (DUBs). DUBs mediate the deubiquitination of substrate proteins, regulate protein functions, and participate in various cellular processes. The protein abundance, localization and catalytic activity of deubiquitylases are strictly regulated. During the occurrence and development of tumors, many important tumor-related proteins are regulated by deubiquitylases, and dysfunction of deubiquitylases also affect DNA damage repair, apoptosis, autophagy, molecular signaling pathways and chromatin remodeling, which modulate the process of cell growth, invasion and metastasis in tumors. Therefore, DUB is an important protein family involved in tumorigenesis, and is potential drug targets. Many small molecule inhibitors have been used in the research of anti-tumor treatments. This article mainly summarizes the regulation mechanism of ubiquitin molecules, ubiquitin chain specificity, and deubiquitinating enzyme system in tumors, and provides basis for the design of clinical drug targets and diagnostic indicators.
孙倩倩,李方周,赵文会. 去泛素化酶与肿瘤[J]. 中国生物化学与分子生物学报, 2021, 37(2): 145-152.
SUN Qian-Qian,LI Fang-Zhou,ZHAO Wen-Hui. Deubiquitylases In Tumors. Chinese Journal of Biochemistry and Molecular Biol, 2021, 37(2): 145-152.
[1] Lu Y, Lee B, King RW, et al. Substrate degradation by the proteasome: A single-molecule kinetic analysis[J]. Science, 2015, 348(6231): 1250834
[2] Thrower JS, Hoffman L, Rechsteiner M, et al. Recognition of the polyubiquitin proteolytic signal[J]. EMBO J, 2000, 19(1): 94-102
[3] Silva GM, Finley D, Vogel C. K63 polyubiquitination is a new modulator of the oxidative stress response[J]. Nat Struct Mol Biol, 2015, 22(2): 116-123
[4] Spence J, Gali RR, Dittmar G, et al. Cell cycle–regulated modification of the ribosome by a variant multiubiquitin chain[J]. Cell, 2000, 102(1): 67-76
[5] Yau R, Rape M. The increasing complexity of the ubiquitin code[J]. Nat Cell Biol, 2016, 18(6): 579-586
[6] Xia Z, Sun L, Chen X, et al. Direct activation of protein kinases by unanchored polyubiquitin chains[J]. Nature, 2009, 461(7260): 114-119
[7] Zeng W, Sun L, Jiang X, et al. Reconstitution of the RIG-I pathway reveals a signaling role of unanchored polyubiquitin chains in innate immunity[J]. Cell, 2010, 141(2): 315-330
[8] Michel MA, Elliott PR, Swatek KN, et al. Assembly and specific recognition of k29-and k33-linked polyubiquitin[J]. Mol Cell, 2015, 58(1): 95-109
[9] Kristariyanto YA, Rehman SAA, Campbell DG, et al. K29-selective ubiquitin binding domain reveals structural basis of specificity and heterotypic nature of k29 polyubiquitin[J]. Mol Cell, 2015, 58(1): 83-94
[10] Kim W, Bennett EJ, Huttlin EL, et al. Systematic and quantitative assessment of the ubiquitin-modified proteome[J]. Mol Cell, 2011, 44(2): 325-340
[11] Elia AE, Boardman AP, Wang DC, et al. Quantitative proteomic atlas of ubiquitination and acetylation in the DNA damage response[J]. Mol Cell, 2015, 59(5): 867-881
[12] Hrdinka M, Gyrd-Hansen M. The Met1-linked ubiquitin machinery: emerging themes of (De) regulation [J]. Mol Cell, 2017, 68(2): 265-280
[13] Min M, Mevissen TE, De Luca M, et al. Efficient APC/C substrate degradation in cells undergoing mitotic exit depends on K11 ubiquitin linkages[J]. Mol Biol Cell, 2015, 26(24): 4325-4332
[14] Meyer H, Rape M. Enhanced protein degradation by branched ubiquitin chains[J]. Cell, 2014, 157(4): 910-921
[15] Wang C, Yang C, Ji J, et al. Deubiquitinating enzyme USP20 is a positive regulator of Claspin and suppresses the malignant characteristics of gastric cancer cells[J]. Int J Oncol, 2017, 50(4): 1136-1146
[16] Zhu M, Zhao H, Liao J, et al. HERC2/USP20 coordinates CHK1 activation by modulating CLASPIN stability[J]. Nucleic Acids Res, 2014, 42(21): 13074-13081
[17] Kim JH, Seo D, Kim SJ, et al. The deubiquitinating enzyme USP20 stabilizes ULK1 and promotes autophagy initiation[J]. EMBO Rep, 2018, 19(4): e44378
[18] Zhang M, Cai Z, Zhang M, et al. USP20 promotes cellular antiviral responses via deconjugating K48-linked ubiquitination of MITA[J]. J Immunol, 2019, 202(8): 2397-2406
[19] Wu C, Luo K, Zhao F, et al. USP20 positively regulates tumorigenesis and chemoresistance through β-catenin stabilization[J]. Cell Death Differ, 2018, 25(10): 1855-1869
[20] Lu X, Shi X, Hu A, et al. Feeding induces cholesterol biosynthesis via the mTORC1–USP20–HMGCR axis[J]. Nature, 2020, 588(7838):479-484
[21] Cortez JT, Montauti E, Shifrut E, et al. CRISPR screen in regulatory T cells reveals modulators of Foxp3[J]. Nature, 2020, 582(7812): 416-420
[22] Liu T, Jiang L, Tavana O, et al. The deubiquitylase OTUB1 mediates ferroptosis via stabilization of SLC7A11[J]. Cancer Res, 2019, 79(8): 1913-1924
[23] Li M, Chen D, Shiloh A, et al. Deubiquitination of p53 by HAUSP is an important pathway for p53 stabilization[J]. Nature, 2002, 416(6881): 648-653
[24] Kon N, Kobayashi Y, Li M, et al. Inactivation of HAUSP in vivo modulates p53 function[J]. Oncogene, 2010, 29(9): 1270-1279
[25] Hu M, Gu L, Li M, et al. Structural basis of competitive recognition of p53 and MDM2 by HAUSP/USP7: implications for the regulation of the p53–MDM2 pathway[J]. PLoS Biol, 2006, 4(2): e27
[26] Turnbull AP, Ioannidis S, Krajewski WW, et al. Molecular basis of USP7 inhibition by selective small-molecule inhibitors[J]. Nature, 2017, 550(7677): 481-486
[27] Dang CV. MYC on the Path to Cancer[J]. Cell, 2012, 149(1): 22-35
[28] Otto T, Horn S, Brockmann M, et al. Stabilization of N-Myc Is a Critical Function of Aurora A in Human Neuroblastoma[J]. Cancer Cell, 2009, 15(1): 67-78
[29] Tavana O, Li D, Dai C, et al. HAUSP deubiquitinates and stabilizes N-Myc in neuroblastoma[J]. Nat Med, 2016, 22(10): 1180-1186
[30] Li J,Yen C,Liaw D,et al. PTEN, a putative protein tyrosine phosphatase gene mutated in human brain, breast, and prostate cancer[J]. Science, 1997, 275(5308): 1943-1947
[31] Song MS, Salmena L, Carracedo A, et al. The deubiquitinylation and localization of PTEN are regulated by a HAUSP–PML network[J]. Nature, 2008, 455(7214): 813-817
[32] Van der Horst A, de Vries-Smits AM, Brenkman AB, et al. FOXO4 transcriptional activity is regulated by monoubiquitination and USP7/HAUSP[J]. Nat Cell Biol, 2006, 8(10): 1064-1073
[33] Ji L, Lu B, Zamponi R, et al. USP7 inhibits Wnt/β-catenin signaling through promoting stabilization of Axin[J]. Nat Commun, 2019, 10(1): 4184
[34] An T, Gong Y, Li X, et al. USP7 inhibitor P5091 inhibits Wnt signaling and colorectal tumor growth[J]. Biochem Pharmacol, 2017, 131: 29-39
[35] Novellasdemunt L, Foglizzo V, Cuadrado L, et al. USP7 is a tumor-specific WNT activator for APC-mutated colorectal cancer by mediating β-catenin deubiquitination[J]. Cell Rep, 2017, 21(3): 612-627
[36] Pan D. The hippo signaling pathway in development and cancer[J]. Dev Cell, 2010, 19(4): 491-505
[37] Sun X, Ding Y, Zhan M, et al. Usp7 regulates Hippo pathway through deubiquitinating the transcriptional coactivator Yorkie[J]. Nat Commun, 2019, 10(1): 411
[38] Pérez-Mancera PA, Rust AG, van der Weyden L, et al. Erratum: Corrigendum: The deubiquitinase USP9X suppresses pancreatic ductal adenocarcinoma[J]. Nature, 2013, 494(7437): 390
[39] Schwickart M, Huang X, Lill JR, et al. Deubiquitinase USP9X stabilizes MCL1 and promotes tumour cell survival[J]. Nature, 2010, 463(7277): 103-107
[40] Zhu C, Ji X, Zhang H, et al. Deubiquitylase USP9X suppresses tumorigenesis by stabilizing large tumor suppressor kinase 2 (LATS2) in the Hippo pathway[J]. J Biol Chem, 2018, 293(4): 1178-1191
[41] Dupont S, Mamidi A, Cordenonsi M, et al. FAM/USP9x, a deubiquitinating enzyme essential for TGFbeta signaling, controls Smad4 monoubiquitination[J]. Cell, 2009, 136(1): 123-135
[42] Fu P, Du F, Liu Y, et al. WP1130 increases cisplatin sensitivity through inhibition of usp9x in estrogen receptor-negative breast cancer cells[J]. Am J Transl Res, 2017, 9(4): 1783-1791
[43] Hong K, Hu L, Liu X, et al. USP37 promotes deubiquitination of HIF2α in kidney cancer[J]. Proc Natl Acad Sci, 2020, 117(23): 13023-13032
[44] 耿瑞,赵美美,王嘉东. 泛素特异性蛋白酶 15 稳定着色性干皮病 F 蛋白并促进 DNA 链间交联损伤修复[J]. 中国生物化学与分子生物学报(Geng R, Zhao MM, Wang JD. Ubiquitin-specific Protease 15 Stabilizes XPF and Promotes Repair of DNA Interstrand Crosslink[J]. Chin J Biochem Mol Biol), 2019, 35(5): 509-516
[45] Chen L, Smith MD, Lv L, et al. USP15 suppresses tumor immunity via deubiquitylation and inactivation of TET2[J]. Sci Adv, 2020, 6(38): eabc9730
[46] Di Nunno V, Frega G, Santoni M, et al. BAP1 in solid tumors[J]. Future Oncol, 2019, 15(18): 2151-2162
[47] Jia L, Zhou Z, Liang H, et al. KLF5 promotes breast cancer proliferation, migration and invasion in part by upregulating the transcription of TNFAIP2[J]. Oncogene, 2016, 35(16): 2040-2051
[48] Qin J, Zhou Z, Chen W, et al. BAP1 promotes breast cancer cell proliferation and metastasis by deubiquitinating KLF5[J]. Nat Commun, 2015, 6: 8471
[49] Chen X, Yin Y, Cheng J, et al. BAP1 acts as a tumor suppressor in intrahepatic cholangiocarcinoma by modulating the ERK1/2 and JNK/c-Jun pathways[J]. Cell Death Dis, 2018, 9(10): 1036
[50] Bononi A, Giorgi C, Patergnani S, et al. BAP1 regulates IP3R3-mediated Ca2+ flux to mitochondria suppressing cell transformation[J]. Nature, 2017, 546(7659): 549-553
[51] Maraganore DM, Lesnick TG, Elbaz A, et al. UCHL1 is a Parkinson's disease susceptibility gene[J]. Ann Neurol, 2004, 55(4): 512-521
[52] Semenza GL. Molecular mechanisms mediating metastasis of hypoxic breast cancer cells[J]. Trends Mol Med, 2012, 18(9): 534-543
[53] Goto Y, Zeng L, Yeom CJ, et al. UCHL1 provides diagnostic and antimetastatic strategies due to its deubiquitinating effect on HIF-1α[J]. Nat Commun, 2015, 6: 6153
[54] Tian Z, D Arcy P, Wang X, et al. A novel small molecule inhibitor of deubiquitylating enzyme USP14 and UCHL5 induces apoptosis in multiple myeloma and overcomes bortezomib resistance[J]. Blood, 2014, 123(5): 706-716
[55] Fukui S, Nagasaka K, Miyagawa Y, et al. The proteasome deubiquitinase inhibitor bAP15 downregulates TGF-β/Smad signaling and induces apoptosis via UCHL5 inhibition in ovarian cancer[J]. Oncotarget, 2019, 10(57): 5932-5948
[56] Wang Y, Zhou X, Xu M, et al. OTUB1-catalyzed deubiquitination of FOXM1 facilitates tumor progression and predicts a poor prognosis in ovarian cancer[J]. Oncotarget, 2016, 7(24): 36681-36697
[57] Weng W, Zhang Q, Xu M, et al. OTUB1 promotes tumor invasion and predicts a poor prognosis in gastric adenocarcinoma[J]. Am J Transl Res, 2016, 8(5): 2234-2244
[58] Iglesias-Gato D, Chuan Y, Jiang N, et al. OTUB1 de-ubiquitinating enzyme promotes prostate cancer cell invasion in vitro and tumorigenesis in vivo[J]. Mol Cancer, 2015, 14(1): 8
[59] Zhou H, Liu Y, Zhu R, et al. OTUB1 promotes esophageal squamous cell carcinoma metastasis through modulating Snail stability[J]. Oncogene, 2018, 37(25): 3356-3368
[60] Zhou Y, Wu J, Fu X, et al. OTUB1 promotes metastasis and serves as a marker of poor prognosis in colorectal cancer[J]. Mol Cancer, 2014, 13: 258
[61] Hurt EM, Wiestner A, Rosenwald A, et al. Overexpression of c-maf is a frequent oncogenic event in multiple myeloma that promotes proliferation and pathological interactions with bone marrow stroma[J]. Cancer cell, 2004, 5(2): 191-199
[62] Wang S, Juan J, Zhang Z, et al. Inhibition of the deubiquitinase USP5 leads to c-Maf protein degradation and myeloma cell apoptosis[J]. Cell Death Dis, 2017, 8(9): e3058
[63] Xu Y, Xu M, Tong J, et al. Targeting the Otub1/c-Maf axis for the treatment of multiple myeloma[J]. Blood, 2020, blood.2020005199
[64] Zhao L, Wang X, Yu Y, et al. OTUB1 protein suppresses mTOR complex 1 (mTORC1) activity by deubiquitinating the mTORC1 inhibitor DEPTOR[J]. J Biol Chem, 2018, 293(13): 4883-4892
[65] Zhang Z, Du J, Wang S, et al. OTUB2 promotes cancer metastasis via hippo-independent activation of YAP and TAZ[J]. Mol Cell, 2019, 73(1): 7-21.e7
[66] Yuan L, Lv Y, Li H, et al. Deubiquitylase OTUD3 regulates PTEN stability and suppresses tumorigenesis[J]. Nat Cell Biol, 2015, 17(9): 1169-1181
[67] Du T, Li H, Fan Y, et al. The deubiquitylase OTUD3 stabilizes GRP78 and promotes lung tumorigenesis[J]. Nat Commun, 2019, 10(1): 2914
[68] Qian Y, Wong CC, Xu J, et al. Sodium Channel Subunit SCNN1B Suppresses Gastric Cancer Growth and Metastasis via GRP78 Degradation[J]. Cancer Res, 2017, 77(8): 1968-1982
[69] Shen J, Ha DP, Zhu G, et al. GRP78 haploinsufficiency suppresses acinar-to-ductal metaplasia, signaling, and mutant Kras-driven pancreatic tumorigenesis in mice[J]. Proc Natl Acad Sci, 2017, 114(20): E4020- E4029
[70] Zhang Z, Fan Y, Xie F, et al. Breast cancer metastasis suppressor OTUD1 deubiquitinates SMAD7[J]. Nat Commun, 2017, 8(1): 2116
[71] Liu X, Zhang X, Peng Z, et al. Deubiquitylase OTUD6B Governs pVHL Stability in an Enzyme‐Independent Manner and Suppresses Hepatocellular Carcinoma Metastasis[J]. Adv Sci(Weinh), 2020, 7(8): 1902040
[72] Lork M, Verhelst K, Beyaert R. CYLD, A20 and OTULIN deubiquitinases in NF-κ B signaling and cell death: so similar, yet so different[J]. Cell Death Differ, 2017, 24(7): 1172-1183
[73] Kayagaki N, Phung Q, Chan S, et al. DUBA:a deubiquitinase that regulates type I interferon production[J]. Science, 2007, 318(5856): 1628-1632
[74] Rutz S, Kayagaki N, Phung QT, et al. Deubiquitinase DUBA is a post-translational brake on interleukin-17 production in T cells[J]. Nature, 2015, 518(7539): 417-421
[75] de Vivo A, Sanchez A, Yegres J, et al. The OTUD5–UBR5 complex regulates FACT-mediated transcription at damaged chromatin[J]. Nucleic Acids Res, 2019, 47(2): 729-746
[76] Luo J, Lu Z, Lu X, et al. OTUD5 regulates p53 stability by deubiquitinating p53[J]. PLoS One, 2013, 8(10): e77682
[77] Li F, Sun Q, Liu K, et al. OTUD5 cooperates with TRIM25 in transcriptional regulation and tumor progression via deubiquitination activity[J]. Nat Commun, 2020, 11(1): 4184
[78] Zeng C, Zhao C, Ge F, et al. Machado-Joseph Deubiquitinases: From Cellular Functions to Potential Therapy Targets[J]. Front Pharmacol, 2020, 11: 1311
[79] Shi Z, Chen J, Zhang X, et al. Ataxin-3 promotes testicular cancer cell proliferation by inhibiting anti-oncogene PTEN[J]. Biochem Biophys Res Commun, 2018, 503(1): 391-396
[80] Sacco JJ, Yau TY, Darling S, et al. The deubiquitylase Ataxin-3 restricts PTEN transcription in lung cancer cells[J]. Oncogene, 2014, 33(33): 4265-4272
[81] Liu H, Li X, Ning G, et al. The Machado–Joseph disease deubiquitinase ataxin-3 regulates the stability and apoptotic function of p53[J]. PLoS Biol, 2016, 14(11): e2000733
[82] Rehman SAA, Kristariyanto YA, Choi S, et al. MINDY-1 is a member of an evolutionarily conserved and structurally distinct new family of deubiquitinating enzymes[J]. Mol Cell, 2016, 63(1): 146-155
[83] Choi E, Lee H, Sung JY, et al. FAM188B enhances cell survival via interaction with USP7[J]. Cell Death Dis, 2018, 9(6): 633
[84] Verma R, Aravind L, Oania R, et al. Role of Rpn11 metalloprotease in deubiquitination and degradation by the 26S proteasome[J]. Science, 2002, 298(5593): 611-615
[85] Butler LR, Densham RM, Jia J, et al. The proteasomal de‐ubiquitinating enzyme POH1 promotes the double‐strand DNA break response[J]. EMBO J, 2012, 31(19): 3918-3934
[86] Wang B, Ma A, Zhang L, et al. POH1 deubiquitylates and stabilizes E2F1 to promote tumour formation[J]. Nat Commun, 2015, 6: 8704