[1] Bouda E, Stapon A, Garcia-Diaz M. Mechanisms of mammalian mitochondrial transcription [J]. Protein Sci, 2019, 28(9): 1594-1605
[2] D'Souza AR, Minczuk M. Mitochondrial transcription and translation: overview [J]. Essays Biochem, 2018, 62(3): 309-320
[3] Martin M, Cho J, Cesare AJ, et al. Termination factor-mediated DNA loop between termination and initiation sites drives mitochondrial rRNA synthesis [J]. Cell, 2005, 123(7): 1227-1240
[4] Ojala D, Montoya J, Attardi G. tRNA punctuation model of RNA processing in human mitochondria [J]. Nature, 1981, 290(5806): 470-474
[5] Pajak A, Laine I, Clemente P, et al. Defects of mitochondrial RNA turnover lead to the accumulation of double-stranded RNA in vivo [J]. PLoS Genet, 2019, 15(7): e1008240
[6] Chang JH, Tong L. Mitochondrial poly(A) polymerase and polyadenylation [J]. Biochim Biophys Acta, 2012, 1819(9-10): 992-997
[7] Lapkouski M, Hällberg BM. Structure of mitochondrial poly(A) RNA polymerase reveals the structural basis for dimerization, ATP selectivity and the SPAX4 disease phenotype [J]. Nucleic Acids Res, 2015, 43(18): 9065-9075
[8] Bai Y, Srivastava SK, Chang JH, et al. Structural basis for dimerization and activity of human PAPD1, a noncanonical poly(A) polymerase [J]. Mol Cell, 2011, 41(3): 311-320
[9] Tomecki R, Dmochowska A, Gewartowski K, et al. Identification of a novel human nuclear-encoded mitochondrial poly(A) polymerase [J]. Nucleic Acids Res, 2004, 32(20): 6001-6014
[10] Nagaike T, Suzuki T, Katoh T, et al. Human mitochondrial mRNAs are stabilized with polyadenylation regulated by mitochondria-specific poly(A) polymerase and polynucleotide phosphorylase [J]. J Biol Chem, 2005, 280(20): 19721-19727
[11] Filipovska A, Rackham O. Modular recognition of nucleic acids by PUF, TALE and PPR proteins [J]. Mol Biosyst, 2012, 8(3): 699-708
[12] Ferreira N, Rackham O, Filipovska A. Regulation of a minimal transcriptome by repeat domain proteins [J]. Semin Cell Dev Biol, 2018, 76: 132-141
[13] Kühl I, Miranda M, Atanassov I, et al. Transcriptomic and proteomic landscape of mitochondrial dysfunction reveals secondary coenzyme Q deficiency in mammals [J]. Elife, 2017, 6: e30952
[14] Holzmann J, Frank P, Löffler E, et al. RNase P without RNA: identification and functional reconstitution of the human mitochondrial tRNA processing enzyme [J]. Cell, 2008, 135(3): 462-474
[15] Siira SJ, Spåhr H, Shearwood AMJ, et al. LRPPRC-mediated folding of the mitochondrial transcriptome [J]. Nat Commun, 2017, 8(1): 1532
[16] Davies SMK, Rackham O, Shearwood AMJ, et al. Pentatricopeptide repeat domain protein 3 associates with the mitochondrial small ribosomal subunit and regulates translation [J]. FEBS Lett, 2009, 583(12): 1853-1858
[17] Davies SMK, Lopez Sanchez MI, Narsai R, et al. MRPS27 is a pentatricopeptide repeat domain protein required for the translation of mitochondrially encoded proteins [J]. FEBS Lett, 2012, 586(20): 3555-3561
[18] Perks KL, Ferreira N, Richman TR, et al. Adult-onset obesity is triggered by impaired mitochondrial gene expression [J]. Sci Adv, 2017, 3(8): e1700677
[19] Mourier A, Ruzzenente B, Brandt T, et al. Loss of LRPPRC causes ATP synthase deficiency [J]. Hum Mol Genet, 2014, 23(10): 2580-2592
[20] Wilson WC, Hornig-Do HT, Bruni F, et al. A human mitochondrial poly(A) polymerase mutation reveals the complexities of post-transcriptional mitochondrial gene expression [J]. Hum Mol Genet, 2014, 23(23): 6345-6355
[21] Spåhr H, Rozanska A, Li X, et al. SLIRP stabilizes LRPPRC via an RRM-PPR protein interface [J]. Nucleic Acids Res, 2016, 44(14): 6868-6882
[22] Lagouge M, Mourier A, Lee HJ, et al. SLIRP Regulates the Rate of Mitochondrial Protein Synthesis and Protects LRPPRC from Degradation [J]. PLoS Genet, 2015, 11(8): e1005423
[23] Chujo T, Suzuki T. Trmt61B is a methyltransferase responsible for 1-methyladenosine at position 58 of human mitochondrial tRNAs [J]. RNA, 2012, 18(12): 2269-2276
[24] Borowski LS, Dziembowski A, Hejnowicz MS, et al. Human mitochondrial RNA decay mediated by PNPase-hSuv3 complex takes place in distinct foci [J]. Nucleic Acids Res, 2013, 41(2): 1223-1240
[25] Toompuu M, Tuomela T, Laine P, et al. Polyadenylation and degradation of structurally abnormal mitochondrial tRNAs in human cells[J].Nucleic Acids Res, 2018, 46(10): 5209-5226
[26] Chen HW, Rainey RN, Balatoni CE, et al. Mammalian polynucleotide phosphorylase is an intermembrane space RNase that maintains mitochondrial homeostasis [J]. Mol Cell Biol, 2006, 26(22): 8475-8487
[27] Golzarroshan B, Lin CL, Li CL, et al. Crystal structure of dimeric human PNPase reveals why disease-linked mutants suffer from low RNA import and degradation activities [J]. Nucleic Acids Res, 2018, 46(16): 8630-8640
[28] Szczesny RJ, Borowski LS, Brzezniak LK, et al. Human mitochondrial RNA turnover caught in flagranti: involvement of hSuv3p helicase in RNA surveillance [J]. Nucleic Acids Res, 2010, 38(1): 279-298
[29] Gammage PA, Moraes CT, Minczuk M. Mitochondrial Genome Engineering: The Revolution May Not Be CRISPR-Ized [J]. Trends Genet, 2018, 34(2): 101-110
[30] Pearce SF, Rebelo-Guiomar P, D’Souza AR, et al. Regulation of mammalian mitochondrial gene expression: recent advances [J]. Trends Biochem Sci, 2017, 42(8): 625-639
[31] Metodiev MD, Lesko N, Park CB, et al. Methylation of 12S rRNA is necessary for in vivo stability of the small subunit of the mammalian mitochondrial ribosome [J]. Cell Metab, 2009, 9(4): 386-397
[32] Metodiev MD, Spahr H, Loguercio Polosa P, et al. NSUN4 is a dual function mitochondrial protein required for both methylation of 12S rRNA and coordination of mitoribosomal assembly [J]. PLoS Genet, 2014, 10(2): e1004110
[33] Lee KW, Bogenhagen DF. Assignment of 2,-O-methyltransferases to modification sites on the mammalian mitochondrial large subunit 16S ribosomal RNA (rRNA) [J]. J Biol Chem, 2014, 289(36): 24936-24942
[34] Greber BJ, Bieri P, Leibundgut M, et al. Ribosome. The complete structure of the 55S mammalian mitochondrial ribosome [J]. Science, 2015, 348(6232): 303-308
[35] Bar-Yaacov D, Frumkin I, Yashiro Y, et al. Mitochondrial 16S rRNA Is Methylated by tRNA Methyltransferase TRMT61B in All Vertebrates [J]. PLoS Biol, 2016, 14(9): e1002557
[36] Antonicka H, Choquet K, Lin ZY, et al. A pseudouridine synthase module is essential for mitochondrial protein synthesis and cell viability [J]. EMBO Rep, 2017, 18(1): 28-38
[37] Dennerlein S, Rozanska A, Wydro M, et al. Human ERAL1 is a mitochondrial RNA chaperone involved in the assembly of the 28S small mitochondrial ribosomal subunit [J]. Biochem J, 2010, 430(3): 551-558
[38] Shutt TE, Shadel GS. A compendium of human mitochondrial gene expression machinery with links to disease [J]. Environ Mol Mutagen, 2010, 51(5): 360-379
[39] Brzezniak LK, Bijata M, Szczesny RJ, et al. Involvement of human ELAC2 gene product in 3, end processing of mitochondrial tRNAs [J]. RNA Biol, 2011, 8(4): 616-626
[40] Lopez-Sanchez MIG, Mercer TR, Davies SMK, et al. RNA processing in human mitochondria [J]. Cell Cycle, 2011, 10(17): 2904-2916
[41] Wolf AR, Mootha VK. Functional genomic analysis of human mitochondrial RNA processing [J]. Cell Rep, 2014, 7(3): 918-931
[42] Zhao X, Patton JR, Davis SL, et al. Regulation of nuclear receptor activity by a pseudouridine synthase through posttranscriptional modification of steroid receptor RNA activator [J]. Mol Cell, 2004, 15(4): 549-558
[43] Zaganelli S, Rebelo-Guiomar P, Maundrell K, et al. The Pseudouridine Synthase RPUSD4 Is an Essential Component of Mitochondrial RNA Granules [J]. J Biol Chem, 2017, 292(11): 4519-4532
[44] Shimpi GG, Vargas S, Poliseno A, et al. Mitochondrial RNA processing in absence of tRNA punctuations in octocorals [J]. BMC Mol Biol, 2017, 18(1): 16
[45] Betat H, Morl M. The CCA-adding enzyme: a central scrutinizer in tRNA quality control [J]. Bioessays, 2015, 37(9): 975-982
[46] Nakamura A, Nemoto T, Heinemann IU, et al. Structural basis of reverse nucleotide polymerization [J]. Proc Natl Acad Sci U S A, 2013, 110(52): 20970-20975
[47] Rorbach J, Nicholls TJJ, Minczuk M. PDE12 removes mitochondrial RNA poly(A) tails and controls translation in human mitochondria [J]. Nucleic Acids Res, 2011, 39(17): 7750-7763
[48] Pearce SF, Rorbach J, Van Haute L, et al. Maturation of selected human mitochondrial tRNAs requires deadenylation [J]. Elife, 2017, 6: e27596
[49] Chihara T, Luginbuhl D, Luo L. Cytoplasmic and mitochondrial protein translation in axonal and dendritic terminal arborization [J]. Nat Neurosci, 2007, 10(7): 828-837
[50] Tolkunova E, Park H, Xia J, et al. The human lysyl-tRNA synthetase gene encodes both the cytoplasmic and mitochondrial enzymes by means of an unusual alternative splicing of the primary transcript [J]. J Biol Chem, 2000, 275(45): 35063-35069
[51] Nagao A, Suzuki T, Katoh T, et al. Biogenesis of glutaminyl-mt tRNAGln in human mitochondria [J]. Proc Natl Acad Sci U S A, 2009, 106(38): 16209-16214
[52] Echevarría L, Clemente P, Hernández-Sierra R, et al. Glutamyl-tRNAGln amidotransferase is essential for mammalian mitochondrial translation in vivo [J]. Biochem J, 2014, 460(1): 91-101
[53] Waters PJ, Lace B, Buhas D, et al. HSD10 mitochondrial disease: p.Leu122Val variant, mild clinical phenotype, and founder effect in French-Canadian patients from Quebec [J]. Mol Genet Genomic Med, 2019, 7(12): e1000
[54] Schroeder C, Navid-Hill E, Meiners J, et al. Nuclear ELAC2 overexpression is associated with increased hazard for relapse after radical prostatectomy [J]. Oncotarget, 2019, 10(48): 4973-4986
[55] Xiao Q, Wu XL, Michal JJ, et al. A novel nuclear-encoded mitochondrial poly(A) polymerase PAPD1 is a potential candidate gene for the extreme obesity related phenotypes in mammals [J]. Int J Biol Sci, 2006, 2(4): 171-178
[56] Mukaneza Y, Cohen A, Rivard M-È, et al. mTORC1 is required for expression of LRPPRC and cytochrome-c oxidase but not HIF-1αin Leigh syndrome French Canadian type patient fibroblasts [J]. Am J Physiol Cell Physiol, 2019, 317(1): C58-C67
[57] Cui J, Wang L, Ren X, et al. LRPPRC: A Multifunctional Protein Involved in Energy Metabolism and Human Disease [J]. Front Physiol, 2019, 10: 595
[58] Garone C, D'Souza AR, Dallabona C, et al. Defective mitochondrial rRNA methyltransferase MRM2 causes MELAS-like clinical syndrome [J]. Hum Mol Genet, 2017, 26(21): 4257-4266
[59] Cotney J, McKay SE, Shadel GS. Elucidation of separate, but collaborative functions of the rRNA methyltransferase-related human mitochondrial transcription factors B1 and B2 in mitochondrial biogenesis reveals new insight into maternally inherited deafness [J]. Hum Mol Genet, 2009, 18(14): 2670-2682
[60] Broenen E, Ranchin B, Besmond C, et al. RMND1 mutations in two siblings: Severe renal hypoplasia but different levels of extrarenal abnormality severity: The ethics of decision making [J]. Arch Pediatr, 2019, 26(6): 377-380
[61] Matilainen S, Carroll CJ, Richter U, et al. Defective mitochondrial RNA processing due to PNPT1 variants causes Leigh syndrome [J]. Hum Mol Genet, 2017, 26(17): 3352-3361
[62] von Ameln S, Wang G, Boulouiz R, et al. A mutation in PNPT1, encoding mitochondrial- RNA-import protein PNPase, causes hereditary hearing loss [J]. Am J Hum Genet, 2012, 91(5): 919-927
[63] Sarkar D, Lebedeva IV, Emdad L, et al. Human polynucleotide phosphorylase (hPNPaseold- 35): a potential link between aging and inflammation[J]. Cancer Res, 2004, 64(20): 7473-7478
[64] Li X, Lv L, Zheng J, et al. The significance of LRPPRC overexpression in gastric cancer [J]. Med Oncol, 2014, 31(2): 818
[65] Shadel GS. Coupling the mitochondrial transcription machinery to human disease [J]. Trends Genet, 2004, 20(10): 513-519
[66] Haack TB, Kopajtich R, Freisinger P, et al. ELAC2 mutations cause a mitochondrial RNA processing defect associated with hypertrophic cardiomyopathy [J]. Am J Hum Genet, 2013, 93(2): 211-223
[67] Richter U, Evans ME, Clark WC, et al. RNA modification landscape of the human mitochondrial tRNALys regulates protein synthesis [J]. Nat Commun, 2018, 9(1): 3966
|