[1] Posnett J, Franks P. The burden of chronic wounds in the UK[J]. Nurs Times, 2008, 104(3): 44-45
[2] Gottrup F, Holstein P, Jørgensen B, et al. A new concept of a multidisciplinary wound healing center and a national expert function of wound healing[J]. Arch Surg, 2001, 136(7): 765-772
[3] Kumar S, Ashe HA, Parnell LN, et al. The prevalence of foot ulceration and its correlates in type 2 diabetic patients: a population‐based study[J]. Diabet Med, 1994, 11(5): 480-484
[4] Demaria M, Ohtani N, Youssef SA, et al. An essential role for senescent cells in optimal wound healing through secretion of PDGF-AA[J]. Dev Cell, 2014, 31(6): 722-733
[5] Velarde MC, Demaria M, Melov S, et al. Pleiotropic age-dependent effects of mitochondrial dysfunction on epidermal stem cells[J]. Proc Natl Acad Sci U S A, 2015, 112(33): 10407-10412
[6] Nishiguchi MA, Spencer CA, Leung DH, et al. Aging suppresses skin-derived circulating SDF1 to promote full-thickness tissue regeneration[J]. Cell Rep, 2018, 24(13): 3383-3392. e5
[7] Metcalfe AD, Ferguson MWJ. Tissue engineering of replacement skin: the crossroads of biomaterials, wound healing, embryonic development, stem cells and regeneration[J]. J R Soc Interface, 2007, 4(14): 413-437
[8] Lazarus GS, Cooper DM, Knighton DR, et al. Definitions and guidelines for assessment of wounds and evaluation of healing[J]. Arch Dermatol, 1994, 130(4): 489-493
[9] Childs DR, Murthy AS. Overview of wound healing and management[J]. Surg Clin North Am, 2017, 97(1): 189-207
[10] Qing C. The molecular biology in wound healing & non-healing wound[J]. Chin J Traumatol, 2017, 20(4): 189-193
[11] Clark RA. The molecular and cellular biology of wound repair, 2nd ed[M]. New York: Springer Science & Business Media, 2013: 3-20
[12] Barrientos S, Stojadinovic O, Golinko MS, et al. Growth factors and cytokines in wound healing[J]. Wound Repair Regen, 2008, 16(5): 585-601
[13] Waaijer MEC, Goldeck D, Gunn DA, et al. Are skin senescence and immunosenescence linked within individuals?[J]. Aging Cell, 2019, 18(4): e12956
[14] Orioli D, Dellambra E. Epigenetic regulation of skin cells in natural aging and premature aging diseases[J]. Cells, 2018, 7(12): 268
[15] Victorelli S, Lagnado A, Halim J, et al. Senescent human melanocytes drive skin ageing via paracrine telomere dysfunction[J]. EMBO J, 2019, 38(23): e101982
[16] Harada M, Jinnin M, Wang Z, et al. The expression of miR-124 increases in aged skin to cause cell senescence and it decreases in squamous cell carcinoma[J]. Biosci Trends, 2017, 10(6): 454-459
[17] Velarde MC, Demaria M, Melov S, et al. Pleiotropic age-dependent effects of mitochondrial dysfunction on epidermal stem cells[J]. Proc Natl Acad Sci U S A, 2015, 112(33): 10407-10412
[18] Langton AK, Halai P, Griffiths CEM, et al. The impact of intrinsic ageing on the protein composition of the dermal-epidermal junction[J]. Mech Ageing Dev, 2016, 156: 14-16
[19] Chen B, Sun Y, Zhang J, et al. Human embryonic stem cell-derived exosomes promote pressure ulcer healing in aged mice by rejuvenating senescent endothelial cells[J]. Stem Cell Res Ther, 2019, 10(1): 142
[20] Liu N, Matsumura H, Kato T, et al. Stem cell competition orchestrates skin homeostasis and ageing[J]. Nature, 2019, 568(7752): 344-350
[21] Adamus J, Aho S, Meldrum H, et al. p16INK4A influences the aging phenotype in the living skin equivalent[J]. J Invest Dermatol, 2014, 134(4): 1131-1133
[22] Freund A, Patil CK, Campisi J. p38MAPK is a novel DNA damage response‐independent regulator of the senescence‐associated secretory phenotype[J]. EMBO J, 2011, 30(8): 1536-1548
[23] Quan T, Little E, Quan H, et al. Elevated matrix metalloproteinases and collagen fragmentation in photodamaged human skin: impact of altered extracellular matrix microenvironment on dermal fibroblast function[J]. J Invest Dermatol, 2013, 133(5): 1362-1366
[24] Quan T, Wang F, Shao Y, et al. Enhancing structural support of the dermal microenvironment activates fibroblasts, endothelial cells, and keratinocytes in aged human skin in vivo[J]. J Invest Dermatol, 2013, 133(3): 658-667
[25] Fisher GJ, Quan T, Purohit T, et al. Collagen fragmentation promotes oxidative stress and elevates matrix metalloproteinase-1 in fibroblasts in aged human skin[J]. Am J Pathol, 2009, 174(1): 101-114
[26] Gil J. Cellular senescence causes ageing[J]. Nat Rev Mol Cell Biol, 2019, 20(7): 388
[27] Hernandez-Segura A, Nehme J, Demaria M. Hallmarks of cellular senescence[J]. Trends Cell Biol, 2018, 28(6): 436-453
[28] Da Silva-Álvarez S, Guerra-Varela J, Sobrido-Cameán D, et al. Cell senescence contributes to tissue regeneration in zebrafish[J]. Aging Cell, 2020, 19(1): e13052
[29] Jun JI, Lau LF. The matricellular protein CCN1 induces fibroblast senescence and restricts fibrosis in cutaneous wound healing[J]. Nat Cell Biol, 2010, 12(7): 676-685
[30] Meyer K, Hodwin B, Ramanujam D, et al. Essential role for premature senescence of myofibroblasts in myocardial fibrosis[J]. J Am Coll Cardiol, 2016, 67(17): 2018-2028
[31] Grotendorst GR, Rahmanie H, Duncan MR. Combinatorial signaling pathways determine fibroblast proliferation and myofibroblast differentiation[J]. FASEB J, 2004, 18(3): 469-479
[32] Wu LW, Chen WL, Huang SM, et al. Platelet-derived growth factor-AA is a substantial factor in the ability of adipose-derived stem cells and endothelial progenitor cells to enhance wound healing[J]. FASEB J, 2019, 33(2): 2388-2395
[33] Midwood KS, Williams LV, Schwarzbauer JE. Tissue repair and the dynamics of the extracellular matrix[J]. Int J Biochem Cell Biol, 2004, 36(6): 1031-1037
[34] Krizhanovsky V, Yon M, Dickins RA, et al. Senescence of activated stellate cells limits liver fibrosis[J]. Cell, 2008, 134(4): 657-667
[35] Schafer MJ, White TA, Iijima K, et al. Cellular senescence mediates fibrotic pulmonary disease[J]. Nat Commun, 2017, 8: 14532
[36] Hou J, Kim S. Possible role of ginsenoside Rb1 in skin wound healing via regulating senescent skin dermal fibroblast[J]. Biochem Biophys Res Commun, 2018, 499(2): 381-388
[37] Salminen A, Kauppinen A, Kaarniranta K. Emerging role of NF-κB signaling in the induction of senescence-associated secretory phenotype (SASP)[J]. Cell Signal, 2012, 24(4): 835-845
[38] Keyes BE, Liu S, Asare A, et al. Impaired epidermal to dendritic T cell signaling slows wound repair in aged skin[J]. Cell, 2016, 167(5): 1323-1338. e14
[39] Lewis JM, Girardi M, Roberts SJ, et al. Selection of the cutaneous intraepithelial γδ+ T cell repertoire by a thymic stromal determinant[J]. Nat Immunol, 2006, 7(8): 843-850
[40] Jameson J, Ugarte K, Chen N, et al. A role for skin γδ T cells in wound repair[J]. Science, 2002, 296(5568): 747-749
[41] Jameson J, Havran WL. Skin γδ T‐cell functions in homeostasis and wound healing[J]. Immunol Rev, 2007, 215: 114-122
[42] Franceschi C, Campisi J. Chronic inflammation (inflammaging) and its potential contribution to age-associated diseases[J]. J Gerontol A Biol Sci Med Sci, 2014, 69(Suppl 1): S4-S9
[43] Mahmoudi S, Mancini E, Xu L, et al. Heterogeneity in old fibroblasts is linked to variability in reprogramming and wound healing[J]. Nature, 2019, 574(7779): 553-558
[44] Guerrero-Juarez CF, Dedhia PH, Jin S, et al. Single-cell analysis reveals fibroblast heterogeneity and myeloid-derived adipocyte progenitors in murine skin wounds[J]. Nat Commun, 2019, 10(1): 650
[45] Shook BA, Wasko RR, Rivera-Gonzalez GC, et al. Myofibroblast proliferation and heterogeneity are supported by macrophages during skin repair[J]. Science, 2018, 362(6417): eaar2971
[46] Demaria M, Desprez PY, Campisi J, et al. Cell autonomous and non-autonomous effects of senescent cells in the skin[J]. J Invest Dermatol, 2015, 135(7): 1722-1726
[47] Ashcroft GS, Dodsworth J, Van Boxtel E, et al. Estrogen accelerates cutaneous wound healing associated with an increase in TGF-β1 levels[J]. Nat Med, 1997, 3(11): 1209-1215
[48] Hardman MJ, Emmerson E, Campbell L, et al. Selective estrogen receptor modulators accelerate cutaneous wound healing in ovariectomized female mice[J]. Endocrinology, 2008, 149(2): 551-557
[49] Jun JI, Lau LF. CCN2 induces cellular senescence in fibroblasts[J]. J Cell Commun Signal, 2017, 11(1): 15-23
[50] Bourdens M, Jeanson Y, Taurand M, et al. Short exposure to cold atmospheric plasma induces senescence in human skin fibroblasts and adipose mesenchymal stromal cells[J]. Sci Rep, 2019, 9(1): 8671
[51] Huang YH, Chen MH, Guo QL, et al. Interleukin-10 induces senescence of activated hepatic stellate cells via STAT3-p53 pathway to attenuate liver fibrosis[J]. Cell Signal, 2020, 66: 109445 |