[1] Yu H, Xue C, Long M, et al. TEFM enhances transcription elongation by modifying mtRNAP pausing dynamics [J]. Biophys J, 2018, 115(12): 2295-2300
[2] Morozov YI, Agaronyan K, Cheung AC, et al. A novel intermediate in transcription initiation by human mitochondrial RNA polymerase [J]. Nucleic Acids Research, 2014, 42(6): 3884-3893
[3] Hillen HS, Morozov YI, Sarfallah A, et al. Structural basis of mitochondrial transcription initiation[J]. Cell, 2017, 171(5): 1072-1081
[4] Barshad G, Marom S, Cohen T, et al. Mitochondrial DNA transcription and its regulation: an evolutionary perspective[J]. Trends Genet, 2018, 34(9): 682-692
[5] 熊伟, 余敏, 左绍远. 线粒体转录终止因子蛋白家族在线粒体基因表达中的调节作用[J]. 中国生物化学与分子生物学报(Xiong W, Yu M, Zuo SY, et al. Regulation of mitochondrial transcription factor protein family in mitochondrial gene expression [J]. Chin J Biochem Mol Biol), 2015, 31(3): 223-231
[6] Agaronyan K, Morozov YI, Anikin M, et al. Replication-transcription switch in human mitochondria [J]. Science, 2015, 347(6221): 548-551
[7] Emilie B, Anthony S, Miguel GD, et al. Mechanisms of mammalian mitochondrial transcription [J]. Protein Sci, 2019, DOI10.1002/pro.3688
[8] Asin-Cayuela J, Schwend T, Farge G, et al. The human mitochondrial transcription termination factor (mTERF) is fully active in vitro in the nonphosphorylated form [J]. J Biol Chem, 2005, 280(27): 25499-25505
[9] Hillen HS, Parshin AV, Agaronyan K, et al. Mechanism of transcription anti-termination in human mitochondria [J]. Cell, 2017, 171(5): 1082-1093
[10] Hillen HS, Temiakov D, Cramer P. Structural basis of mitochondrial transcription [J]. Nat Struct Mol Biol, 2018, 25(5): 754-765
[11] Posse V, Shahzad S, Falkenberg M, et al. TEFM is a potent stimulator of mitochondrial transcription elongation factor in vitro [J]. Nucleic Acid Res, 2015, 43(5): 2615-2624
[12] Close D, Johnson SJ, Sdano MA, et al. Crystal structures of the S. cerevisiae Spt6 core and C-terminal tandem SH2 domain [J]. J Mol Biol, 2011, 408(4): 697-713
[13] Johnson SJ, Close D, Robinson H, et al. Crystal structure and RNA binding of the Tex protein from Pseudomonas aeruginosa[J]. J Mol Biol, 2008, 377(5): 1460-1473
[14]Ponting CP. Novel domains and orthologues of eukaryotic transcription elongation factors[J]. Nucleic Acids Res, 2002, 30(17): 3643-3652
[15] Aravind L, Makarova KS, Koonin EV. SURVEY AND SUMMARY: Holliday junction resolvases and related nucleases: identification of new families, phyletic distribution and evolutionary trajectories [J]. Nucleic Acids Res, 2000, 28(18): 3417-3432
[16] Minczuk M, He J, Duch AM, et al. TEFM (c17orf42) is necessary for transcription of human mtDNA[J]. Nucleic Acid Res, 2011, 39(10): 4284-4299
[17] Wyatt HD, West SC. Holliday junction resolvases[J]. Cold Spring Harb Perspect Biol, 2014, 6(9): a023192
[18] Ceschini S, Keeley A, McAlister MS, et al. Crystal structure of the fission yeast mitochondrial Holliday junction resolvase Ydc2[J]. EMBO J, 2001, 20(23): 6601-6611
[19] 杨勇琴, 张晓娟, 孙美涛, 等. 人线粒体转录延伸因子蛋白结构与功能的生物信息学分析[J]. 生物技术(Yang YQ, Zhang XJ, Sun MT, et al. Bioinformatics analysis of the structure and function of human mitochondrial transcription elongation factor protein[J]. Biotechnology), 2015, 25(5): 474-480
[20] Yoh SM, Cho H, Pickle L, et al. The Spt6 SH2 domain binds Ser2-P RNAPII to direct Iws1-dependent mRNA splicing and export[J]. Genes Dev, 2007, 21(2): 160-174
[21] Endoh M, Zhu W, Hasegawa J, et al. Human Spt6 stimulates transcription elongation by RNA polymerase II in vitro[J]. Mol Cell Biol, 2004, 24(8): 3324-3336
[22] Falkenberg M, Larsson NG, Gustafsson CM. DNA replication and transcription in mammalian mitochondria[J]. Annu Rev Biol Chem, 2007, 76(1): 679-699
[23] Sultana S, Solotchi M, Ramachandran A, et al. Transcriptional fidelities of human mitochondrial POLRMT, yeast mitochondrial Rpo41, and phage T7 single-subunit RNA polymerases[J]. J Biol Chem, 2017, 292(44): 18145-18160
[24] Tan BG, Wellesley FC, Savery NJ, et al. Length heterogeneity at conserved sequence block 2 in human mitochondrial DNA acts as a rheostat for RNA polymerase POLRMT activity[J]. Nucleic Acid Res, 2016, 44(16): 7817-7829
[25] Borkotoky S, Murali A. The highly efficient T7 RNA polymerase: A wonder macromolecule in biological realm[J]. Int J Biol Macromol. 2018, 118(Pt A): 49-56
[26] Wanrooij S, Fuste JM, Farge G, et al. Human mitochondrial RNA polymerase primes lagging-strand DNA synthesis in vitro[J]. Proc Natl Acad Sci U S A, 2008, 105(32): 11122-11127
[27] Sims RJ 3rd, Belotserkovskaya R, Reinberg D. Elongation by RNA polymerase II: the short and long of it[J]. Genes Dev, 2004, 18(20): 2437-2468
[28] Mulder H. Transcribing β-cell mitochondria in health and disease[J]. Mol Metab, 2017, 6(9): 1040-1051
[29] Wanrooij PH, Uhler JP, Shi Y, et al. A hybrid G-quadruplex structure formed between RNA and DNA explains the extraordinary stability of the mitochondrial R-loop[J]. Nucleic Acids Res, 2012, 40(20): 10334-10344
[30] Wanrooij PH, Uhler JP, Simonsson T, et al. G-quadruplex structures in RNA stimulate mitochondrial transcription termination and primer formation[J]. Proc Natl Acad Sci U S A, 2010, 107(37): 16072-16077
[31] Terzioglu M, Ruzzenente B, Harmel J, et al. MTERF1 binds mtDNA to prevent transcriptional interference at the light-strand promoter but is dispensable for rRNA gene transcription regulation[J]. Cell Metab, 2013, 17(4):618-626
[32] Zheng KW, Wu RY, He YD, et al. A competitive formation of DNA:RNA hybrid G-quadruplex is responsible to the mitochondrial transcription termination at the DNA replication priming site[J]. Nucleic Acids Res, 2014, 42(16): 10832-10844
[33] Ciesielski GL, Oliveira MT, Kaguni LS. Animal mitochondrial DNA replication[J]. Enzymes, 2016, 39:255-292
[34] Posse V, Al-Behadili A, Uhler JP, et al. RNase H1 directs origin-specific initiation of DNA replication in human mitochondria[J]. PLoS Genet, 2019, 15(1): e1007781
[35] Dasgupta S, Masukata H, Tomizawa J. Multiple mechanisms for initiation of ColE1 DNA replication: DNA synthesis in the presence and absence of ribonuclease H[J]. Cell, 1987, 51(6): 1113-1122
[36] Bandelt HJ, Kloss-Brandstätter A, Richards MB, et al. The case for the continuing use of the revised Cambridge Reference Sequence (rCRS) and the standardization of notation in human mitochondrial DNA studies[J]. J Hum Genet, 2014, 59(2): 66-77
[37] Lyonnais S, Tarrés-Soler A, Rubio-Cosials A, et al. The human mitochondrial transcription factor A is a versatile G-quadruplex binding protein[J]. Sci Rep, 2017, 7: 43992 doi: 10.1038/srep43992
[38] 刘巍峰, Jesper SQ. 真核基因启动子非依赖的功能转录延伸复合物的体外组装(英文)[J]. 生物化学与生物物理进展(Liu WF, JESPER SQ. In vitro assembly of a non-dependent functional transcriptional elongation complex of eukaryotic gene promoter[J]. Prog Biochem Biophys), 2006,33(10): 1000-1006
[39] Herbert KM, Zhou J, Mooney RA, et al. E. coli NusG inhibits backtracking and accelerates pause-free transcription by promoting forward translocation of RNA polymerase[J]. J Mol Biol, 2010, 399(1): 17-30
[40] Roux KJ, Kim DI, Burke B, et al. BioID: A screen for protein-protein interactions[J]. Curr Protoc Protein Sci, 2018, 91: 19.23.1-19.23.15
[41] Antonicka H, Sasarman F, Nishimura T, et al. The Mitochondrial RNA-binding protein GRSF1 localizes to RNA granules and is required for posttranscriptional mitochondrial gene expression[J]. Cell Metab, 2013, 17(3): 386-398
[42] Bogenhagen DF, Martin DW, Koller A. Initial steps in RNA processing and ribosome assembly occur at mitochondrial DNA nucleoids[J]. Cell Metab, 2014, 19(4): 618-629
[43] Jourdain AA, Koppen M, Rodley CD, et al. A mitochondria-specific isoform of FASTK is present in mitochondrial RNA granules and regulates gene expression and function[J]. Cell Rep, 2015, 10(7): 1110-1121
[44] Jiang S, Koolmeister C, Misic J, et al. TEFM regulates both transcription elongation and RNA processing in mitochondria[J]. EMBO Rep, 2019, 20(6).pii: e48101
[45] Gustafsson CM, Falkenberg M, Larsson NG. Maintenance and expression of mammalian mitochondrial DNA[J]. Annu Rev Biochem, 2016, 85: 133-160
[46] Park CB, Asin-Cayuela J, Cámara Y, et al. MTERF3 is a negative regulator of mammalian mtDNA transcription[J]. Cell, 2007, 130(2): 273-285
[47] Serra G, Antona V, Corsello G, et al. NF1 microdeletion syndrome: case report of two new patients[J]. Ital J Pediatr, 2019, 45(1): 138
[48] Douglas J, Cilliers D, Coleman K, et al. Mutations in RNF135, a gene within the NF1 microdeletion region, cause phenotypic abnormalities including overgrowth[J]. Nat Genet, 2007, 39(8):963-965
[49] 孙美涛, 梅雯, 王唯斯, 等. 数据挖掘分析线粒体转录延伸因子在胰腺癌中的表达及意义[J]. 井冈山大学学报(自然科学版)(Sun MT, Mei W, Wang WS, et al. Data mining analysis of mitochondrial transcription elongation factor expression and its significance in pancreatic cancer[J]. J Jinggangshan Univ), 2018, 39(05): 38-43
[50] 王唯斯, 李翔宇, 郝西琳, 等. 基于TCGA数据集分析脑胶质瘤中TEFM基因mRNA的表达及意义[J]. 解放军医药杂志(Wang WS, Li XY, Hao XL, et al. Analysis of the expression and significance of TEFM gene mRNA in gliomas based on TCGA dataset[J]. Med & Pharm J Chin PLA),2019, 31(05): 15-21 |