[1] Bartel DP. Metazoan MicroRNAs [J]. Cell, 2018, 173(1): 20-51
[2] Cui J, You C, Chen X. The evolution of microRNAs in plants [J]. Curr Opin Plant Biol, 2017, 35: 61-67
[3] Lee RC, Feibaum RL, Ambros V. The C.elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14 [J]. Cell, 1993, 75(5): 843-854
[4] Reinhart BJ, Slack FJ, Basson M, et al. The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans [J]. Nature, 2000, 403(6772): 901-906
[5] Reinhart BJ, Weinstein EG, Rhoades MW, et al. MicroRNAs in plants [J]. Genes Dev, 2002, 16(13): 1616-1626
[6] D'Ario M, Griffiths-Jones S, Kim M. Small RNAs: big impact on plant development [J]. Trends Plant Sci, 2017, 22(12): 1056-1068
[7] Xie W, Weng A, Melzig MF. MicroRNAs as new bioactive components in medicinal plants [J]. Planta Med, 2016, 82(13): 1153-1162
[8] Kim VN. MicroRNA biogenesis: coordinated cropping and dicing [J]. Nat Rev Mol Cell Biol, 2005, 6(5): 376-385
[9] Baldrich P, Beric A, Meyers BC. Despacito: the slow evolutionary changes in plant microRNAs [J]. Curr Opin Plant Biol, 2018, 42: 16-22
[10] Rogers K, Chen X. Biogenesis, turnover, and mode of action plant microRNAs [J]. Plant Cell, 2013, 25 (7): 2383-2399
[11] Djami-Tchatchou AT, Sanan-Mishra N, Ntushelo K, et al. Functional roles of microRNAs in agronomically important plants-potential as targets for crop improvement and protection [J]. Front Plant Sci, 2017, 8: 378
[12] Voinnet O. Origin, biogenesis, and activity of plant microRNAs [J]. Cell, 2009, 136(4): 669-687
[13] Singh A, Gautam V, Singh S, et al. Plant small RNAs: advancement in the understanding of biogenesis and role in plant development [J]. Planta, 2018, 248(3): 545-558
[14] Iwakawa HO, Tomari Y. Molecular insights into microRNA-mediated translational repression in plants [J]. Mol Cell, 2013, 52(4): 591-601
[15] Khraiwesh B, Arif MA, Seumel GI, et al. Transcriptional control of gene expression by microRNAs [J]. Cell, 2010, 140(1): 111-122
[16] Mallory AC, Vaucheret H. Functions of miroRNAs and related small RNAs in plants [J]. Nat Genet, 2006, 38 Suppl: S31-S36
[17] Zhang B. MicroRNA: a new target for improving plant tolerance to abiotic stress [J]. J Exp Bot, 2015, 66(7): 1749-1761
[18] Tang J, Chu C. MicroRNAs in crop improvement: fine-tuners for complex traits [J]. Nat Plants, 2017, 3: 17077
[19] Li S, Castillo-Gonzalez C, Yu B, et al. The functions of plant small RNAs in development and in stress responses [J]. Plant J, 2017, 90(4): 654-670
[20] Chien PS, Chiang CB, Wang Z, et al. MicroRNA-mediated signaling and regulation of nutrient transport and utilization[J]. Curr Opin Plant Biol, 2017, 39: 73-79
[21] 周芳名, 白志川, 卢善发. 药用植物microRNA [J]. 中草药(Zhou FM, Bai ZC, Lu SF. MicroRNA in medicinal plants[J]. Chin Tradit Herb Drugs), 2013, 44(2): 232-237
[22] Axtell MJ, Bartel DP. Antiquity of microRNAs and their targets in land plants [J]. Plant Cell, 2005, 17(6): 1658-1673
[23] Wang B, Dong M, Chen W, et al. Microarray identification of conserved microRNAs in Pinellia pedatisecta [J]. Gene, 2012, 498(1): 36-40
[24] Dong M, Yang D, Lang Q, et al. Microarray and degradome sequencing reveal microRNA differential expression profiles and their targets in Pinellia pedatisecta [J]. PLoS One, 2013, 8(9): e75978
[25] Xu T, Wang B, Liu X, et al. Microarray-based identification of conserved microRNAs from Pinellia ternata [J]. Gene, 2012, 493(2): 267-272
[26] Wei R, Qiu D, Wilson IW, et al. Identification of novel and conserved microRNAs in Panax notoginseng roots by high-throughput sequencing [J]. BMC Genomics, 2015, 16: 835
[27] Hu J, Zhang H, Ding Y. Identification of conserved microRNAs and their targets in the model legume Lotus japonicus [J]. J Biotechnol, 2013, 164(4): 520-524
[28] Perez-Quintero AL, Sablok G, Tatarinova TV, et al. Mining of miRNAs and potential targets from gene oriented clusters of transcripts sequences of the anti-malarial plant, Artemisia annua [J]. Biotechnol Lett, 2012, 34(4): 737-745
[29] Pani A, Mahapatra RK, Behera N, et al. Computational identification of sweet wormwood (Artemisia annua) microRNA and their mRNA targets [J]. Genomics Proteomics Bioinformatics, 2011, 9(6): 200- 210
[30] Li C, Zhu Y, Guo X, et al. Transcriptome analysis reveals ginsenosides biosynthetic genes, microRNAs and simple sequence repeats in Panax ginseng C. A. Meyer [J]. BMC Genomics, 2013, 14: 245
[31] Wu B, Wang M, Ma Y, et al. High-throughput sequencing and characterization of the small RNA transcriptome reveal features of novel and conserved microRNAs in Panax ginseng [J]. PLoS One, 2012, 7(9): e44385
[32] Yu ZX, Wang LJ, Zhao B, et al. Progressive regulation of sesquiterpene biosynthesis in Arabidopsis and Patchouli (Pogostemon cablin) by the miR156-targeted SPL transcription factors [J]. Mol Plant, 2015, 8 (1): 98-110
[33] Wu B, Li Y, Yan H, et al. Comprehensive transcriptome analysis reveals novel genes involved in cardiac glycoside biosynthesis and mlncRNAs associated with secondary metabolism and stress response in Digitalis purpurea [J]. BMC Genomics, 2012, 13: 15
[34] Prabu GR, Mandal AK. Computational identification of miRNAs and their target genes from expressed sequence tags of tea (Camellia sinensis) [J]. Genomics Proteomics Bioinformatics, 2010, 8(2): 113-121
[35] Legrand S, Valot N, Nicolé F, et al. One-step identification of conserved miRNAs, their targets, potential transcription factors and effector genes of complete secondary metabolism pathways after 454 pyrosequencing of calyx cDNAs from the labiate Salvia sclarea L [J]. Gene, 2010, 450(1-2): 55-62
[36] Li H, Dong Y, Sun Y, et al. Investigation of the microRNAs in safflower seed, leaf, and petal by high- throughput sequencing [J]. Planta, 2011, 233(3): 611-619
[37] Yang Y, Chen X, Chen J, et al. Differential miRNA expression in Rehmannia glutinosa plants subjected to continuous cropping [J]. BMC Plant Biol, 2011, 11: 53
[38] Wang C, Wang X, Kibet NK, et al. Deep sequencing of grapevine flower and berry short RNA library for discovery of novel microRNAs and validation of precise sequences of grapevine microRNAs deposited in miRBase [J]. Physiol Plant, 2011, 143(1): 64-81
[39] Pan L, Wang X, Jin J, et al. Bioinformatic identification and expression analysis of Nelumbo nucifera microRNA and their targets [J]. Appl Plant Sci, 2015, 3(9).pii:apps. 1500046
[40] Mandhan V, Kaur J, Singh K. smRNAome profiling to identify conserved and novel microRNAs in Stevia rebaudiana Bertoni [J]. BMC Plant Biol, 2012, 12: 197
[41] Sahu S, Khushwaha A, Dixit R. Computational identification of miRNAs in medicinal plant Senecio vulgaris (Groundsel) [J]. Bioinformation, 2011, 7(8): 375-378
[42] De Paola D, Cattonaro F, Pignone D, et al. The miRNAome of globe artichoke: conserved and novel micro RNAs and target analysis [J]. BMC Genomics, 2012, 13: 41
[43] Barozai MY, Baloch IA, Din M. Identification of microRNAs and their targets in Helianthus [J]. Mol Biol Rep, 2012, 39(3): 2523-2532
[44] Johansson E, Prade T, Angelidaki I, et al. Economically viable components from Jerusalem artichoke (Helianthus tuberosus L.) in a biorefinery concept [J]. Int J Mol Sci, 2015, 16(4): 8997-9016
[45] Hao DC, Yang L, Xiao PG, et al. Identification of Taxus microRNAs and their targets with high- throughput sequencing and degradome analysis [J]. Physiol Plant, 2012, 146(4): 388-403
[46] Zhang M, Dong Y, Nie L, et al. High-throughput sequencing reveals miRNA effects on the primary and secondary production properties in long-term subcultured Taxus cells [J]. Front Plant Sci, 2015, 6: 604
[47] Gao ZH, Wei JH, Yang Y, et al. Identification of conserved and novel microRNAs in Aquilaria sinensis based on small RNA sequencing and transcriptome sequence data [J]. Gene, 2012, 505(1): 167-175
[48] Xu W, Cui Q, Li F, et al. Transcriptome-wide identification and characterization of microRNAs from castor bean (Ricinus communis L.) [J]. PLoS One, 2013, 8(7): e69995
[49] Galla G, Volpato M, Sharbel TF, et al. Computational identification of conserved microRNAs and their putative targets in the Hypericum perforatum L. flower transcriptome [J]. Plant Reprod, 2013, 26(3): 209- 229
[50] Barvkar VT, Pardeshi VC, Kale SM, et al. Genome-wide identification and characterization of microRNA genes and their targets in flax (Linum usitatissimum): Characterization of flax miRNA genes [J]. Planta, 2013, 237(4): 1149-1161
[51] Li X, Hou Y, Zhang L, et al. Computational identification of conserved microRNAs and their targets from expression sequence tags of blueberry (Vaccinium corybosum) [J]. Plant Signal Behav, 2014, 9(9): e29462
[52] Singh N, Sharma A. In-silico identification of miRNAs and their regulating target functions in Ocimum basilicum [J]. Gene, 2014, 552(2): 277-282
[53] Xu X, Jiang Q, Ma X, et al. Deep sequencing identifies tissue-specific microRNAs and their target genes involving in the biosynthesis of tanshinones in Salvia miltiorrhiza [J]. PLoS One, 2014, 9(11): e111679
[54] Akter A, Islam MM, Mondal SI, et al. Computational identification of miRNA and targets from expressed sequence tags of coffee (Coffea arabica) [J]. Saudi J Biol Sci, 2014, 21(1): 3-12
[55] Jiang Q, Wang F, Tan HW, et al. De novo transcriptome assembly, gene annotation, marker development, and miRNA potential target genes validation under abiotic stresses in Oenanthe javanica [J]. Mol Genet Genomics, 2015, 290(2): 671-683
[56] Prakash P, Rajakani R, Gupta V. Transcriptome-wide identification of Rauvolfia serpentina microRNAs and prediction of their potential targets [J]. Comput Biol Chem, 2016, 61: 62-74
[57] Prakash P, Ghosliya D, Gupta V. Identification of conserved and novel microRNAs in Catharanthus roseus by deep sequencing and computational prediction of their potential targets [J]. Gene, 2015, 554(2): 181-195
[58] Shen EM, Singh EK, Ghosh JS, et al. The miRNAome of Catharanthus roseus: identification, expression analysis, and potential roles of microRNAs in regulation of terpenoid indole alkaloid biosynthesis [J]. Sci Rep, 2017, 7: 43027 |