Regulatory Roles of Mitochondrial Transcription Termination Factor (MTERF) Family Proteins in Mitochondrial Gene Expression
XIONG Wei1),2),3)*, YU Min 3), ZUO Shao-Yuan 1),2)
1) Department of Biochemistry and Molecular Biology,Preclinical College, Dali University, Dali 671000, Yunnan, China; 2) Key Laboratory of Entomological Biopharmaceutical R&D of Yunnan Province, Dali 671000, Yunnan,China;3) Laboratory of Biochemistry and Molecular Biology,School of Life Sciences, Yunnan University, Kunming 650091, China
Mitochondrial transcription termination factors (MTERFs) are a group of highly conserved mtDNA-binding monomeric proteins that are encoded by nuclear genes. MTERFs are widely found in metazoans and plants. In recent years, a lot of remarkable progress about the regulatory roles of MTERFs in mitochondrial gene expression has been made. These research achievements are very significant for elucidating expression and regulation of mitochondrial genome, and for studying human mitochondrial diseases. This article summarized the characteristics of four MTERF family members and their different regulation roles in mtDNA replication, transcription, and translation. The regulatory mechanism of each MTERF family member in mitochondrial gene expression and their application prospects for research of human mitochondrial diseases was also discussed.
Linder T, Park C B, Asin-Cayuela J, et al. A family of putative transcription termination factors shared amongst metazoans and plants [J]. Curr Genet, 2005, 48(4): 265-269
[2]
Roberti M, Polosa P L, Bruni F, et al. MTERF factors: a multifunction protein family[J]. BioMol Concepts, 2010, 1(2): 215-224
[3]
Kruse B, Narasimhan N, Attardi G. Termination of transcription in human mitochondria: Identification and purification of a DNA binding protein factor that promotes termination [J]. Cell, 1989, 58(2): 391-397
[4]
Daga A, Micol V, Hess D, et al. Molecular characteriation of the transcription termination factor from human mitochondria [J]. J Biol Chem, 1993, 268(11): 8123-8130
[5]
Asin-Cayuela J, Schwend T, Farge G, et al. The human mitochondrial transcription termination factor (mTERF) is fully active in vitro in the non-phosphorylated form [J]. J Biol Chem, 2005, 280(27): 25499-25505
[6]
Li X Zhang L S, Guan M X. Cloning and characterization of mouse mTERF encoding a mitochondrial transcription termination factor [J]. Biochem Biophys Res Commun, 2005, 326(2): 505-510
[7]
Fernandez-Silva P, Martinez-Azorin F, Micol V, et al. The human transcription termination factor (mTERF) is a multizipper protein but binds to DNA as a monomer, with evidence pointing to intramolecular leucine zipper interactions [J]. EMBO J, 1997, 16(5): 1066-1079
[8]
Shang J, Clayton D A. Human mitochondrial transcription termination exhibits RNA polymerase independence and biased bipolarity in vitro [J]. J Biol Chem, 1994, 269(46): 29112-29120
[9]
Selwood S P, Chrzanowska-Lightowlers Z M, Lightowlers R N. Does the mitochondrial transcription-termination complex play an essential role in controlling differential transcription of the mitochondrial DNA [J]. Biochem Soc Trans, 2000, 28(2): 154-159
[10]
Yakubovskaya E, Mejia E, Byrnes J, et al. Helix unwinding and base flipping enable human MTERF1 to terminate mitochondrial transcription [J]. Cell, 2010, 141(6): 982-993
[11]
Rubinson E H, Eichman B F. Nucleic acid recognition by tandem helical repeats [J]. Curr Opin Stuct Biol, 2012, 22(1): 101-109
[12]
Jimenez-Menendez N, Fernandez-Millan P, Rubio-Cosials A, et al. Human mitochondrial mTERF wraps around DNA through a left-handed superhelical tandem repeat [J]. Nat Struct Mol Biol, 2010, 17 (7): 891-893
[13]
Byrnes J, Garcia-Diaz M. Mitochondrial transcription: how does it end? [J]. Transcription, 2011, 2 (1): 32-36
[14]
Prieto-Martin A, Montoya J, Martínez-Azorín F. Phosphorylation of rat mitochondrial transcription termination factor (mTERF) is required for transcription termination but not for binding to DNA [J]. Nucleic Acids Res, 2004, 32(7): 2059-2068
[15]
Asin-Cayuela J, Helm M, Attardi G. A monomer-to-trimer transition of the human mitochondrial transcription termination factor (mTERF) is associated with a loss of in vitro activity [J]. J Biol Chem, 2004, 279(15): 15670-15677
[16]
Rebelo A P, William S L, Moraes C T. In vivo methylation of mtDNA reveals the dynamics of protein-mtDNA interactions [J]. Nucleic Acids Res, 2009, 37(20): 6701-6715
[17]
Gustafsson C M, Larsson N G. MTERF1 gives mtDNA an unusual twist [J]. Cell Metab, 2010, 12(1): 3-4
[18]
Martin M, Cho J, Cesare A J, et al. Termination Factor-Mediated DNA Loop between Termination and Initiation Sites Drives Mitochondrial rRNA Synthesis [J]. Cell, 2005, 123(7): 1227-1240
[19]
余敏,伍红,谭德勇. 线粒体转录终止因子蛋白家族研究进展[J]. 生命科学(Yu M,Wu H,Tan DY. Mitochondrial transcription termination factor protein family [J]. Chin Bull Life Sci), 2007, 19 (5): 496-499
[20]
Hwarinen A K, Pohjoismäki J L, Reyes A, et al. The mitochondrial transcription termination factor mTERF modulates replication pausing in human mitochondrial DNA [J]. Nucleic Acids Res, 2007, 35(19): 6458-6474
[21]
Hwarinen A K, Kumanto M K, Marjavaara S K, et al. Effect on mitochondrial transcription of manipulating mTERF protein levels in cultured human HEK239 cells [J]. BMC Mol Biol, 2010, 11(9): 72-78
[22]
Chen G, Dai J, Tan S, et al. MTERF1 regulates the oxidative phosphorylation activity and cell proliferation in HeLa cells [J]. Acta Biochim Biophys Sin, 2014, 46(6): 512-521
[23]
Chomyn A, Martinuzzi A, Yoneda M, et al. MELAS mutation in mtDNA binding site for transcription termination factor causes defects in protein synthesis and in respiration but no change in levels of upstream and downstream mature transcripts [J]. Proc Natl Acad Sci USA, 1992, 89(10) : 4221-4225
[24]
阳娅玲,肖红利,管敏鑫. 人类线粒体tRNA生物合成与线粒体疾病 [J]. 中国生物化学与分子生物学报(Yang Y L,Xiao H L, Guan M X. Human mitochondrial tRNA synthesis and mitochondrial diseases [J]. Chin J Biochem Mol Biol), 2013, 29 (10): 916-925
[25]
Terzioglu M, Ruzzenente B, Harmel J, et al. MTERF1 binds mtDNA to prevent transcriptional interference at the light-strand promoter but is dispensable for rRNA gene transcription regulation [J]. Cell Metab, 2013, 17(4):618-626
[26]
Chen Y, Zhou G, Yu M, et al. Cloning and functional analysis of human mTERFL encoding a novel mitochondrial transcription termination factor-like protein [J]. Biochem Biophys Res Commun, 2005, 337(4): 1112-1118
[27]
Xiong W, Huang W, Jiao Y, et al. Production, purification and characterization of mouse monoclonal antibodies against human mitochondrial transcription termination factor 2 (MTERF2) [J]. Protein Expr Purif, 2012, 82(1): 11-19
[28]
Luca C.Functional analysis of mouse mTERFD3, a novel mitochondrial transcription termination-like factor [J]. Mitochondrion, 2006, 6(5): 263-264
[29]
Wenz T, Luca C, Torraco A, et al. mTERF2 regulates oxidative phosphorylation by modulating mtDNA transcription [J]. Cell Metab, 2009, 9(6): 499 -511
[30]
Pellegrinia M, Asin-Cayuela J, Erdjument-Bromage H, et al. MTERF2 is a nucleoid component in mammalian mitochondria [J]. Biochim Biophys Acta, 2009, 1787(5): 296-302
[31]
Huang W, Yu M, Jiao Y, et al. Mitochondrial transcription termination factor 2 binds to entire mitochondrial DNA and negatively regulates mitochondrial gene expression [J]. Acta Biochim Biophys Sin, 2011, 43(6): 472-479
[32]
Roberti M, Polosa P L, Bruni F, et al. The MTERF family proteins: mitochondrial transcription regulators and beyond [J]. Biochim Biophys Acta, 2009, 1787(5): 303-311
[33]
Roberti M, Bruni F, Loguercio Polosa P, et al. MTERF3, the most conserved member of the mTERF-family, is a modular factor involved in mitochondrial protein synthesis [J]. Biochim Biophys Acta, 2006, 1757(9-10): 1199 -1206
[34]
Park C B, Asin-Cayuela J, Cámara Y, et al. MTERF3 is a negative regulator of mammalian mtDNA transcription [J]. Cell, 2007, 130(2): 273 -285
[35]
Andersson D C, Fauconnier J, Park C B. Enhanced cardiomyocyte Ca(2+) cycling precedes terminal AV-block in mitochondrial cardiomyopathy Mterf3 KO mice [J]. Antioxid Redox Signal, 2011, 15(9): 2455-2464
[36]
Wrdenberg A, Lagouge M, Bratic A, et al. MTERF3 regulates mitochondrial ribosome biogenesis in invertebrates and mammals [J]. PLoS Genet, 2013, 9(1): e1003178
[37]
Xiong W, Luo Y, Zhang C, et al. Expression, purification of recombinant human mitochondrial transcription termination factor 3 (hMTERF3) and preparation of polyclonal antibody against hMTERF3 [J]. Appl Biochem Biotechnol, 2012, 167(8): 2318-2319
[38]
Hwärinen A K, Pohjoismäki J L, Holt I J, et al. Overexpression of MTERFD1 or MTERFD3 impairs the completion of mitochondrial DNA replication [J]. Mol Biol Rep, 2011, 38 (2): 1321-1328
[39]
Bruni F, Polosa P L, Gadaleta M N, et al. Nuclear respiratory factor 2 induces the expression of many but not all human proteins acting in mitochondrial DNA transcription and replication [J]. J Biol Chem, 2010, 285(6): 3939-3948
[40]
Spahr H, Samuelsson T, Hällberg B M, et al. Structure of mitochondrial transcription termination factor 3 reveals a novel nucleic acid-binding domain [J]. Biochem Biophys Res Commun, 2010, 397(3): 389-390
[41]
Yu M, Dai J, Huang W, et al. hMTERF4 knockdown in HeLa cells results in sub-G1 cell accumulation and cell death [J]. Acta Biochim Biophys Sin, 2011, 43(5): 372-379
[42]
Xu Q, Zhang F, He H, et al. Expression profile of mouse Mterfd2, a novel component of the mitochondrial transcription termination factor (MTERF) family [J]. Genes Genet Syst, 2011, 86(4): 269-275
[43]
Camara Y, Asin-Cayuela J, Park C B, et al. MTERF4 regulates translation by targeting the methyltransferase NSUN4 to the mammalian mitochondrial ribosome [J]. Cell Metab, 2011, 13(5): 527-539
[44]
Spahr H, Habermann B, Gustafsson C M, et al. Structure of the human MTERF4-NSUN4 protein complex that regulates mitochondtial ribosome biogenesis [J]. Proc Natl Acad Sci USA, 2012, 109(38):15253-15258
[45]
Yakubovskaya E, Guja K E, Mejia E, et al. Structure of the essential MTERF4:NSUN4 protein complex reveals how an MTERF protein collaborates to facilitate rRNA modification [J]. Structure, 2012, 20(11): 1940-1947
[46]
Metodiev M D, Spahr H, Loguercio Polosa P, et al. NSUN4 is a dual function mitochondrial protein required for both methylation of 12S rRNA and coordination of mitoribosomal assembly [J]. PLoS Genet, 2014, 10(2): e1004110
[47]
肖莉莉,黄原. 线粒体DNA复制及其调控 [J]. 中国生物化学与分子生物学报(Xiao L L, Huang Y. Mitochondrial DNA replication and its regulation [J]. Chin J Biochem Mol Biol), 2006, 22 (6): 435-441
[48]
Asin-Cayuela J, Gustafsson G. Mitochondrial transcription and its regulation in mammalian cells [J]. Trends Biochem Sci, 2007, 32 (3): 111-117
[49]
Sologub Mlu, Kochetkov S N, Temiakov D E. Transcription and its regulation in mammalian and human mitochondria [J]. Mol Biol(Mosk), 2009, 43 (2): 215-229
[50]
Guja K E, Garcia-Diaz M. Hitting the brakes: termination of mitochondrial transcription [J]. Biochim Biophys Acta, 2012, 1819 (9-10): 939-947
[51]
Lightowlers R N, Rozanska A, Chrzanowska-Lightowlers Z M. Mitochondrial protein synthesis: figuring the fundamentals, complexities and complications, of mammalian mitochondrial translation [J]. FEBS Lett, 2014, 588 (15): 2496-2503
[52]
Boczonadi V, Horvath R. Mitochondria: Impaired mitochondrial translation in human disease [J]. Int J Biochem Cell Biol, 2014, 48 (3): 77-84
[53]
Shutt T E, Shadel G S. A compendium of human mitochondrial gene expression machinery with links to disease [J]. Environ Mol Mutagen, 2010, 51 (5): 360-379