Screening 50 Hz Pulsed Electromagnetic Fields of Different Intensities on Proliferation, Differentiation and Mineralization of Rat Osteoblast for the Optimal Parameters
YAN Juan-Li1), WANG Ming-Gang1)*, CHENG Ke-Ming2), GE Bao-Feng2), ZHOU Jian2), MA Xiao-Ni2), SONG Peng2), CHENG Kui 2)
(1)School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou730050, China;2)Institute of Orthopaedics, Lanzhou General Hospital of PLA, Lanzhou730050, China)
Abstract:To study the effects of pulsed electromagnetic fields (PEMFs) of different intensities on proliferation, differentiation and mineralization potentials of rat osteoblast (OB), osteoblast cells were sub-cultured and randomly divided into seven groups: 0, 0.6, 1.2, 1.8, 2.4, 3.0, and 3.6 mT, respectively (with a 0.6 mT increment interval). MTT result showed that treatment at 0.6 mT, 1.8 mT and 3.6 mT induced a signifcant increase of osteoblast proliferation. Treatment at 0.6 mT signifcantly increased osteoblast proliferation (P<0.01). Treatments at 50Hz 0.6 mT signifcantly increased alkaline phosphatase (ALP) activity and the amount of calcium deposition (P<0.01) than that in control groups. The osteoblasts increased the formation of calcified tubercle from 4 days to 12 days after PEMFs exposure. Treatments at 50 Hz 0.6 mT significantly increased the amount of calcium deposition (P<0.01). Consistently, treatment at 0.6 mT signifcantly increased the number and area of histochemically stained (P<0.01), as well as alizarin red-stained ALP compared to the untreated control. mRNA expression showed that exposure at 0.6mT signifcantly increased Bmp-2 and Collagen-1 mRNA expression compared to the untreated control (P<0.01). Exposure to PEMFs of different intensities signifcantly decreased Rankl mRNA expression compared to the untreated control. Exposure at 50 Hz 0.6 mT PEMFs significantly enhanced osteoblast proliferation, differentiation and mineralization. It is a theoretical basis that pulsed electromagnetic fields were used to treat osteoporosis.
闫娟丽 王鸣刚 陈克明 葛宝丰 周建 马小妮 宋鹏 成魁. 不同强度50 Hz脉冲电磁场促进大鼠颅骨成骨细胞矿化成熟最佳参数的筛选[J]. 中国生物化学与分子生物学报, 2014, 30(7): 721-729.
YAN Juan-Li WANG Ming-Gang CHENG Ke-Ming GE Bao-Feng ZHOU Jian MA Xiao-Ni SONG Peng CHENG Kui . Screening 50 Hz Pulsed Electromagnetic Fields of Different Intensities on Proliferation, Differentiation and Mineralization of Rat Osteoblast for the Optimal Parameters. Chinese Journal of Biochemistry and Molecular Biol, 2014, 30(7): 721-729.
Lewiecki E M.Prevention and treatment of postmenopausal osteoporosis[J].Obstet Gynecol Clin North Am, 2008, 35(2):301-315
Huang L Q, He H C, He C Q.Clinical update of pulsed electromagnetic fields on osteoporosis[J].Chin Med J(Engl), 2008, 121(20):2095-2099
Bassett C A.Fundamental and practical aspects of therapeutic uses of pulsed electromagnetic fields (PEMFs)[J].Crit Rev Biomed Eng, 1989, 17(5):451-529
Brighton C T, Luessenhop C P, Pollack S R, et al.Treatment of castration-induced osteoporosis by a capacitively coupled electrical signal in rat vertebrae[J].J Bone Joint Surg Am, 1989, 71(2):228-236
Zhang X, Zhang J, Qu X.Effects of different extremely low-frequency electromagnetic fields on osteoblasts[J].Electromagn Biol Med, 2007, 26(3):167-177
Sun L Y, Hsieh D K, Yu T C.Effect of pulsed electromagnetic field on the proliferation and differentiation potential of human bone marrow mesenchymal stem cells[J].Bioelectromagnetics, 2009, 30(4):251-260
Zhou J, Ming L G, Ge B F, et al.Effects of 50 Hz sinusoidal electromagnetic ?elds of different intensities on proliferation,differentiation and mineralization potentials of rat osteoblasts[J].Bone, 2011, 49(4):753-761
Funk R H, Monsees T, Ozkucur N.Electromagnetic effects-From cell biology to medicine[J].Prog Histochem Cytochem, 2009, 43(4):177-264
Manni V, Lisi A, Rieti S, et al.Low electromagnetic field (50 Hz) induces differentiation on primary human oral keratinocytes (HOK)[J].Bioelectromagnetics, 2004, 25(2):118-126
周 建, 陈克明, 葛宝丰.正弦电磁场促进体外培养成骨细胞分化成熟的双“强度窗”效应生物物理学报[J].Acta Biophys Sin, 2011, 27(6):507-516
Martino C F, Belchenko D, Ferguson V.et alEffects of PEMFs on the cellular activity of osteoblast-like cells[J].Bioelectromagnetics, 2008, 29(2):125-132
Cho H, Choi Y K, Lee D H, et al.Effects of magnetic nanoparticle‐incorporated human bone marrow-derived mesenchymal stem cells exposed to pulsed electromagnetic fields on injured rat spinal cord[J].Biotechnol Appl Biochem, 2013, 60(6):596-602
Rosen C J, Compston J E, Lian J B.Primer on the Metabolic Bone Diseases and Disorders of Mineral Metabolism[M]. John Wiley & Sons, 2009
Lim K, Hexiu J, Kim J, et al.Effects of electromagnetic fields on osteogenesis of human alveolar bone-derived mesenchymal stem cells[J]. Biomed Res Int, 2013, 2013:296019. doi: 10.1155/2013/296019
Vincenzi F, Targa M, Corciulo C, et al.Pulsed electromagnetic fields increased the anti-inflammatory effect of A2A and A3 adenosine receptors in human TC-28a2 chondrocytes and hFOB 119 osteoblasts[J].PLoS One, 2013, 8(5):e65561-
Date T, Doiguchi Y, Nobuta M, et al.Bone morphogenetic protein-2 induces differentiation of multipotent C3H10T12 cells into osteoblasts,chondrocytes,and adipocytes in vivo and in vitro[J].J Orthop Sci, 2004, 9(5):503-508
Satija N K, Sharma D, Afrin F, et al.High throughput transcriptome profiling of lithium stimulated human mesenchymal stem cells reveals priming towards osteoblastic lineage[J].PLoS One, 2013, 8(1):e55769-
Wang Y, Yao J, Yuan M, et al.Osteoblasts can induce dental pulp stem cells to undergo osteogenic differentiation [J][J].Cytotechnology, 2013, 65(2):223-231
Wright H L, McCarthy H S, Middleton J, et al.RANK,RANKL and osteoprotegerin in bone biology and disease[J].Curr Rev Musculoskelet Med, 2009, 2(1):56-64