基因组编辑技术能够实现基因组的精确修饰和改造,是后基因组时代研究基因功能和遗传信息的主要手段。传统的基因打靶技术通过低效率的细胞自发同源重组实现目的基因的定点修饰。真核细胞中DNA双链断裂介导的同源重组效率远高于自发同源重组,利用人工核酸内切酶特异性地在基因组靶序列处引入双链断裂,通过提供适当形式的、含有一定长度同源臂的供体DNA,能够实现相对高效的基因组靶向编辑。本文系统总结了环状质粒、线性化质粒、聚合酶链式反应产物及单链寡聚脱氧核苷酸4种类型的供体DNA在基因组精确编辑研究中的应用及候选原则,以期为以后相关研究中供体DNA的选择、设计提供参考和借鉴。
线粒体 DNA(mitochondrial DNA,mtDNA)是线粒体内最重要的遗传物质。mtDNA 突变普 遍存在,突变型 mtDNA 与野生型 mtDNA 共存的现象被称为 mtDNA 异质性。mtDNA 异质性与衰老和多种疾病密切相关。mtDNA异质性特性、mtDNA 异质性与衰老和疾病相关性以及线粒体疾病的治疗等都是近年来遗传学研究的热点。本文从 mtDNA 异质性的动态变化、组织特异性、mtDNA 异质性与疾病以及线粒体疾病的治疗等方面对 mtDNA 异质性进行综述。
Dicer蛋白是RNaseⅢ家族中重要的一员,对miRNA或siRNA的产生起着至关重要的作用。Dicer蛋白通常由1个DEXH盒子或H盒子、1个DUF283结构域、1个PAZ结构域、2个RNaseⅢ结构域(RNaseⅢa和RNaseⅢb)和1个dsRNA结合结构域组成。Dicer蛋白的分子结构决定了其在miRNAs合成中发挥着重要作用。Dicer及生成的miRNA与肿瘤又有着密切关系。本文主要针对Dicer及其与肿瘤的关系作简要综述。
氨酰tRNA合成酶(aminoacyltRNA synthetases, aaRSs)通过催化氨基酸与相应tRNA的氨酰化以保证遗传信息翻译的准确性,在生物体内具有重要作用。近年来,随着对aaRS催化机制理解的不断加深,aaRS的应用逐渐成为研究热点。在细菌中,aaRS活性被抑制后会导致其生命活动发生紊乱,根据aaRS在人体与病原菌内不同的催化特点设计针对病原体的特异性aaRS抑制剂,将有助于开发以aaRS为靶标的新型抗生素。另外,通过突变aaRS可以在蛋白质序列中定点掺入非天然氨基酸,扩展蛋白质工程。本文简述了aaRS的分类、结构与功能的特点,并在此基础上综述了aaRS在研发新型抑制剂,设计改造特殊蛋白质等方面的应用。
睾丸间质干细胞(stem Leydig cells, SLCs)是哺乳动物睾丸间质内的一种成体干细胞,可以分化成为成熟的睾丸间质细胞,参与精子发生。目前,仅在人、大鼠和小鼠中成功分离出SLCs,并证实其具有分化成为睾酮分泌细胞的潜能。最新研究发现:PDGFRα、Nestin、Thy-1、CD51和COUP-TFII等可作为SLCs的分子标记,但并不具有特异性。迄今,只在大鼠中建立了SLCs的基本分离培养体系。因此,本文拟从大鼠等SLCs的分子标记、分离培养条件、增殖分化调控以及哺乳动物LCs在精子发生过程中作用的研究进展等作一综述,以期为哺乳动物SLCs研究提供科学参考。
线粒体是真核细胞至关重要的细胞器,参与机体细胞能量代谢和细胞凋亡等多种生物学过程。线粒体还参与机体的天然免疫反应的调节。线粒体不仅可以作为病毒免疫反应的载体,还可以通过产生ROS参与抗菌反应。线粒体受到损伤、刺激后,可释放mtDNA,TFAM,ROS,ATP,心磷脂和甲酰肽等内容物。这些分子可以作为损伤相关模式分子(damageassociated molecular patterns, DAMPs)被模式识别受体识别,从而参与宿主的免疫调节。研究表明,线粒体已成为内源性DAMPs的重要来源,在先天性免疫应答以及疾病进展过程中发挥着重要的作用。本文就线粒体来源的损伤相关模式分子在机体免疫调节中的作用进行综述。
跨膜蛋白106A (transmembrane protein 106A, TMEM106A)是本中心首先鉴定的与细胞死亡相关的分子。体内外的功能研究证明,TMEM106A在胃癌细胞的高表达能够明显抑制肿瘤细胞的生长,并诱导细胞死亡。本研究利用组织芯片和免疫组化的方法,发现TMEM106A蛋白在癌旁非肿瘤组织中高表达,主要定位在胞质,而在肝癌细胞中低表达或者不表达。进一步的功能研究证明TMEM106A在肝癌细胞系HepG2中高表达能够降低细胞活力、诱导胞质空泡化以及细胞周期阻滞在G2/M期,最终细胞死亡。胞质聚集的空泡表现为单层膜,液泡内基本不含亚细胞器结构以及高电子密度的聚集物。本研究首次证明TMEM106A能够引起巨泡样细胞死亡,其作用机制需要进一步探讨。
已知黄芩苷(baicalin)通过削弱肌动蛋白相关蛋白(actin-related protein, Arp)2/3复合物的活性抑制血管平滑肌细胞(vascular smooth muscle cell, VSMC)伪足形成和迁移,然而,其抑制该信号途径的机制尚不明确。本研究证明,黄芩苷通过抑制VSMC活性氧(reactive oxygen species,ROS)生成降低Arp2/3活性,发挥阻止细胞伪足形成和迁移的功能。分别利用TRITC鬼笔环肽和ROS荧光探针标记VSMCs,结果显示,黄芩苷能显著抑制血小板源性生长因子(plateletderived growth factor, PDGF)-BB诱导的VSMC伪足形成和迁移,伴有ROS生成减少。用超氧物歧化酶(superoxide dismutase, SOD)清除胞内过氧化物后,PDGF-BB引发的VSMC伪足形成被逆转,且该过程与降低皮层肌动蛋白微丝(F-actin)成核蛋白Arp2/3活性有关。免疫沉淀分析结果进一步表明,黄芩苷降低p47phox磷酸化水平,与ROS生成减少相一致。体内的实验也表明,黄芩苷(70 mg/kg/d)能有效抑制球囊损伤诱导的大鼠颈总动脉ROS生成。以上结果表明,黄芩苷通过抑制NADPH氧化酶介导的ROS生成,降低细胞皮质区F-actin成核活性,阻止细胞伪足形成、迁移,进而发挥血管保护作用。
前期研究发现周期分裂蛋白37(cell division cycle 37,CDC37)的异常表达可能与结直肠腺癌的转移有关,但是其作用机制尚不清楚。本研究通过实时定量PCR和免疫印迹实检测CDC37在不同肠癌细胞中的mNRA和蛋白质表达水平,结果发现CDC37在结肠癌Lovo和Ls174T细胞中表达较高。siRNA靶向沉默CDC37表达后,细胞侧向迁移能力、垂直迁移能力、侵袭活性均显著降低。实时定量PCR和免疫印迹实验结果发现,敲除CDC37后,MMP9和MMP2的mNRA和蛋白质表达水平均显著下调。以上研究结果表明,CDC37通过调节MMP9和MMP2等侵袭转移关键分子的表达在结肠癌细胞侵袭转移过程中发挥关键作用。
α-L-鼠李糖苷酶是特异性切割末端含α-L-鼠李糖的天然化合物的一类糖苷水解酶,该酶在食品、医药、化学等行业都有广泛的应用。本研究旨在利用保守氨基酸基序结合PCR驱动的宏基因组学方法,从提取的健康人体粪便宏基因组DNA中获得新型细菌源α-L-鼠李糖苷酶基因。通过对CAZy数据库GH78家族中193条细菌源α-L-鼠李糖苷酶氨基酸序列进行多重序列比对,首次将α-L-鼠李糖苷酶家族分为3个亚家族,并确定了其中两个亚家族的两对保守氨基酸基序。基于保守基序氨基酸序列设计简并引物,PCR扩增保守基序间基因片段,对PCR产物克隆测序,结果获得12条α-L-鼠李糖苷酶基因片段,对其编码的氨基酸序列在GenBank数据库进行Blast序列比对,其中两条基因片段的氨基酸序列一致性仅为52%,一条为73%,其余9条在94%以上。根据GenBank数据库中序列一致性94%以上片段对应全长基因序列设计上下游引物,以人体粪便宏基因组DNA为模板,扩增获得3条α-L-鼠李糖苷酶全长基因,并将其克隆于载体pET-28a,在E. coli BL21(DE3)内进行异源表达,目的蛋白多以包涵体形式存在于沉淀中,少量以可溶性形式存在于上清中。人体肠道细菌宏基因组为新型α-L-鼠李糖苷酶基因发现提供了潜在的基因资源库,基于保守氨基酸基序驱动的宏基因组学方法,从人体肠道以及环境宏基因组中直接获取新酶基因是可行的。
苦荞凝集素(tartary buckwheat lectin,TBL)是一类兼具核糖体失活蛋白N-糖苷酶活性和芦丁水解酶活性的糖蛋白,具有显著的抑制结肠癌细胞增殖的功能。先前研究表明,TBL可以下调结肠癌细胞HCT116中包括miR-135a 和miR-135b在内的一些oncomiRs的表达,并且可以抑制结肠癌细胞HCT116的增殖。因此,我们推测TBL可能通过调控oncomiRs从而抑制HCT116细胞的增殖。本研究中,我们构建了包含miR-135a 和miR-35b结合位点的腺瘤性结肠息肉病基因(adenomatous polyposis coli,APC)的3′-UTR区。双荧光素酶报告系统表明,经过TBL处理后,实验组的荧光素酶活性较对照组高,而且用miR-135a&b的反义核酸anti-miR-135a&b处理后和实验组有相似的结果。Western 印迹分析表明,TBL处理HCT116细胞24 h后,细胞中APC和p-β-catenin的表达上调,总β-catenin的表达下调,且存在剂量依赖效应,而对GSK-3β的表达无明显影响。进一步探究了TBL进入细胞的方式,我们发现,加入TBL作用2 h后,其主要存在于HCT116细胞的表面,部分进入细胞内部,在细胞表面可以同半乳糖凝集素galectin-3竞争结合细胞膜表面受体,并且存在剂量和时间依赖性。这些结果表明:TBL以HCT116细胞表面的galectin-3受体为靶点,通过内吞作用进入细胞,进而调控HCT116细胞中miR-135a&b的表达,影响Wnt信号通路而抑制结肠癌细胞的增殖。
miRNA是在许多生物过程中都起着至关重要作用的一类内源性非编码的小RNA,与癌症、肿瘤的发生有关。现发现很多miRNA在黑色素生成中都有重要的调控作用,但miR-146a是否对黑色素的生成具有影响未见报道。本研究发现miR-146a通过靶向抑制酪氨酸酶相关蛋白1(tyrosinase related protein 1,TYRP1)的表达而使黑色素生成降低。在小鼠黑色素细胞中分别转染miR-146a mimic和miR-146a 抑制剂,通过qRT-PCR与Western印迹分析比较各实验组中TYRP1基因与酪氨酸家族相关基因酪氨酸酶(tyrosinase, TYR)、酪氨酸酶相关蛋白2(tyrosinase related protein 2, TYRP2)的表达差异。双荧光报告实验验证TYRP1与miR-146a的靶向关系,双荧光酶活性结果显示,实验组相比对照组,荧光素酶活性明显降低,说明TYRP1是miR-146a的靶基因之一;qRT-PCR和Western印迹结果显示实验组TYR、TYRP1及TYRP2 在mRNA水平和蛋白质水平表达均显著降低;紫外分光光度法检测黑色素含量,结果显示miR-146a mimic转染组黑色素含量明显下降,而抑制组的黑色素含量呈上升趋势。综上所述,miR-146a通过靶向抑制TYRP1基因的表达,而影响TYR家族成员的表达,调控黑色素的生物合成。
硫酯酶(thioesterase, TE)具有区域定向性(regiospecific)、化学定向性(chemospecific)及立体定向性(stereospecific)的特点。这些特性决定了TE作为生物催化剂(biocatalysis)在工业生产中具有较高的应用价值和广阔的应用前景。McyC-TE (microcystin thioesterase, McyC TE)来自铜绿微囊藻(microcystis aeruginosa)NRPS/PKS生物合成基因簇。我们利用正交试验提高McyC TE表达量,得到稳定的诱导表达条件,并结合成熟的线性多肽化学合成法对其底物适用性做了进一步研究。得到的最佳诱导表达条件为:诱导时机2 h,诱导剂异丙基-β-D-硫代半乳糖苷(isopropyl-β-D-thiogalactopyranoside, IPTG)浓度0.75 mmol/L,诱导时间6 h,诱导转速210 r/min,诱导温度20 ℃,使TE的表达量由8.75 mg/L提高至22.15 mg/L,时间缩短了6.5 h。TE表达量的大幅度提升和表达时间的缩短为将来酶的结构及催化机制研究奠定了基础。TE底物适用性研究结果发现:McyC TE并不遵循“4 n + 2原则”;底物中转角过多不仅不利于环肽的形成,更可能形成卷曲影响环化;无D型氨基酸亦可通过加入其它位阻较小较灵活的Gly或者自带天然转角Pro的可弱化肽链的刚性,促进催化反应;含苯环的Phe的引入在一定程度上阻碍了环化;底物无肽链氨基酸数目奇偶性的选择;延长多肽链长度也可环化,McyC-TE的底物容忍度较大,使天然多肽药物筛选范围增大,也为增强天然多肽药物药效增加了改良方案,为进一步研究McyC TE的催化功能提供了实验基础。