Periaxin蛋白与腓骨肌萎缩症

杨艳 彭婷婷 石亚伟

中国生物化学与分子生物学报 ›› 2015, Vol. 31 ›› Issue (2) : 113-120.

PDF(1042 KB)
PDF(1042 KB)
中国生物化学与分子生物学报 ›› 2015, Vol. 31 ›› Issue (2) : 113-120.
综述

Periaxin蛋白与腓骨肌萎缩症

  • 杨艳1),2),彭婷婷1),石亚伟1)*
作者信息 +

null

  • YANG Yan1), 2), PENG Ting-Ting1), SHI Ya-Wei1)*
Author information +
文章历史 +

摘要

Periaxin是施旺氏细胞(Schwann cells)与晶状体纤维细胞中特异表达的支架蛋白之一.在施旺氏细胞包裹轴突形成髓鞘过程中,periaxin蛋白参与髓鞘的延展、修复及再生等.PRX基因的缺失或突变将引起脱髓鞘型腓骨肌萎缩症(CMT)4F亚型的发生.本文就periaxin蛋白分子结构特点、生理学功能、以及其基因突变与脱髓鞘型腓骨肌萎缩症CMT4F亚型的发生等进行综述.

Abstract

null

关键词

施旺氏细胞 / 髓鞘 / 轴周蛋白 / 脱髓鞘型腓骨肌萎缩症

引用本文

导出引用
杨艳 彭婷婷 石亚伟. Periaxin蛋白与腓骨肌萎缩症[J]. 中国生物化学与分子生物学报, 2015, 31(2): 113-120
YANG Yan, PENG Ting-Ting, SHI Ya-Wei. null[J]. Chinese Journal of Biochemistry and Molecular Biology, 2015, 31(2): 113-120

参考文献

[1] Gillespie C S, Sherman D L, Blair G E, et al. Periaxin, a novel protein of myelinating Schwann cells with a possible role in axonal ensheathment[J]. Neuron, 1994, 12(3): 497-508
[2] Wu L M, Williams A, Delaney A, et al. Increasing internodal distance in myelinated nerves accelerates nerve conduction to a flat maximum[J]. Curr Biol, 2012, 22(20): 1957-1961
[3] Jessen K R, Mirsky R. The origin and development of glial cells in peripheral nerves[J]. Nat Rev Neurosci, 2005, 6(9): 671-682
[4]丁文龙,朱浩.施旺细胞发育及其调控的信号通路. 解剖科学进展.(Ding W L, Zhu H. Development of Schwann cell and signaling pathways of regulation[J].Prog Anat Sci, 2006, 12(4): 376-380
[5] Grandis M, Vigo T, Passalacqua M, et al. Different cellular and molecular mechanisms for early and late-onset myelin protein zero mutations[J]. Hum Mol Genet, 2008, 17(13): 1877-1889
[6] Smith G S, Samborska B, Hawley S P, et al. Nucleus-localized 21.5-kDa myelin basic protein promotes oligodendrocyte proliferation and enhances neurite outgrowth in coculture, unlike the plasma membrane- associated 18.5-kDa isoform[J]. J Neurosci Res, 2013, 91(3): 349-362
[7] Berger P, Tersar K, Ballmer-Hofer K, et al. The CMT4B disease-causing proteins MTMR2 and MTMR13/ SBF2 regulate AKT signalling[J]. J Cell Mol Med, 2011, 15(2): 307-315
[8] Nualart-Marti A, Solsona C, Fields R D. Gap junction communication in myelinating glia[J]. Biochim Biophys Acta, 2013, 1828(1): 69-78
[9] Felsky D, Voineskos A N, Lerch J P, et al. Myelin-associated glycoprotein gene and brain morphometry in schizophrenia[J]. Front Psychiatry, 2012, 3: 40
[10] Patzig J, Jahn O, Tenzer S, et al. Quantitative and integrative proteome analysis of peripheral nerve myelin identifies novel myelin proteins and candidate neuropathy loci[J]. J Neurosci, 2011, 31(45): 16369-16386
[11] Chernousov M A, Yu W M, Chen Z L, et al. Regulation of Schwann cell function by the extracellular matrix [J]. Glia, 2008, 56(14): 1498-1507
[12] Williams A C, Brophy P J. The function of the Periaxin gene during nerve repair in a model of CMT4F[J]. J Anat, 2002, 200(4): 323-330
[13] Maddala R, Skiba N P, Lalane R R, et al. Periaxin is required for hexagonal geometry and membrane organization of mature lens fibers[J]. Dev Biol, 2011, 357(1): 179-190
[14] Wang Z, Han J, David L L, et al. Proteomics and phosphoproteomics analysis of human lens fiber cell membranes [J]. Invest Ophthalmol Vis Sci, 2013, 54(2): 1135-1143
[15] Song S, Landsbury A, Dahm R, et al. Functions of the intermediate filament cytoskeleton in the eye lens[J]. J Clin Invest, 2009, 119(7): 1837-1848
[16] Gillespie C S, Lee M, Fantes J F, et al. The gene encoding the Schwann cell protein periaxin localizes on mouse chromosome 7 (Prx)[J]. Genomics, 1997, 41(2): 297-298
[17] Han H, Kursula P. Periaxin and AHNAK nucleoprotein 2 form intertwined homodimers through domain swapping[J]. J Biol Chem, 2014, 289(20):14121-14131
[18] de Morree A, Droog M, Grand Moursel L, et al. Self-regulated alternative splicing at the AHNAK locus[J]. FASEB J, 2012, 26(1): 93-103
[19] Han H, Kursula P. Preliminary crystallographic analysis of the N-terminal PDZ-like domain of periaxin, an abundant peripheral nerve protein linked to human neuropathies[J]. Acta Crystallogr Sect F Struct Biol Cryst Commun, 2013, 69(Pt 7): 804-808
[20] Boerkoel C F, Takashima H, Stankiewicz P, et al. Periaxin mutations cause recessive Dejerine-Sottas neuropathy [J]. Am J Hum Genet, 2001, 68(2): 325-333
[21] Dytrych L, Sherman D L, Gillespie C S, et al. Two PDZ domain proteins encoded by the murine periaxin gene are the result of alternative intron retention and are differentially targeted in Schwann cells[J]. J Biol Chem, 1998, 273(10): 5794-5800
[22] Delague V, Bareil C, Tuffery S, et al. Mapping of a new locus for autosomal recessive demyelinating Charcot- Marie-Tooth disease to 19q13.1-13.3 in a large consanguineous Lebanese family: exclusion of MAG as a candidate gene [J]. Am J Hum Genet, 2000, 67(1): 236-243
[23] Lee H J, Zheng J J. PDZ domains and their binding partners: structure, specificity, and modification[J]. Cell Commun Signal, 2010, 8:8
[24] Sherman D L, Brophy P J. A tripartite nuclear localization signal in the PDZ-domain protein L-periaxin[J]. J Biol Chem, 2000, 275(7): 4537-4540
[25] Sherman D L, Fabrizi C, Gillespie C S, et al. Specific disruption of a schwann cell dystrophin-related protein complex in a demyelinating neuropathy[J]. Neuron, 2001, 30(3): 677-687
[26] Shi Y, Zhang L, Yang T. Nuclear export of L-periaxin, mediated by its nuclear export signal in the PDZ domain [J]. PLoS One, 2014, 9(3): e91953
[27] Wrabetz L, Feltri M L. Do Schwann cells stop, DR(o)P2, and roll?[J]. Neuron, 2001, 30(3): 642-644
[28] Court F A, Hewitt J E, Davies K, et al. A laminin-2, dystroglycan, utrophin axis is required for compartmentalization and elongation of myelin segments [J]. J Neurosci, 2009, 29(12): 3908-3919
[29] Peddareddygari L R, Sobol I, Pillai H B, et al. Analysis of association of deletion in the repeat region of the periaxin gene with late onset motor neuropathy [J]. J Neurol Res, 2012, 2(6): 235-243
[30] Barankova L, Siskova D, Huhne K, et al. A 71-nucleotide deletion in the periaxin gene in a Romani patient with early-onset slowly progressive demyelinating CMT [J]. Eur J Neurol, 2008, 15(6): 548-551
[31] Scherer S S, Xu Y T, Bannerman P G, et al. Periaxin expression in myelinating Schwann cells: modulation by axon-glial interactions and polarized localization during development[J].Development,1995,121(12):4265- 4273
[32] Szigeti K, Lupski J R. Charcot-Marie-Tooth disease [J]. Eur J Hum Genet, 2009, 17(6): 703-710
[33] Reilly M M, Murphy S M, Laura M. Charcot-Marie-Tooth disease [J]. J Peripher Nerv Syst, 2011, 16(1): 1-14
[34] Court F A, Brophy P J, Ribchester R R. Remodeling of motor nerve terminals in demyelinating axons of periaxin-null mice[J]. Glia, 2008, 56(4): 471-479
[35] Takashima H, Boerkoel C F, De Jonghe P, et al. Periaxin mutations cause a broad spectrum of demyelinating neuropathies[J]. Ann Neurol, 2002, 51(6): 709-715
[36] Kabzinska D, DracH, ShermanD L,et al.Charcot-Marie-Tooth type 4F disease caused by S399fsx410 mutation in the PRX gene[J]. Neurology, 2006, 66(5): 745-747
[37] Auer-Grumbach M, Fischer C, Papic L, et al. Two novel mutations in the GDAP1 and PRX genes in early onset Charcot-Marie-Tooth syndrome[J]. Neuropediatrics, 2008, 39(1): 33-38
[38] Marchesi C, Milani M, Morbin M,et al. Four novel cases of periaxin-related neuropathy and review of the literature[J]. Neurology, 2010,75(20): 1830-1838
[39] Tokunaga S, Hashiguchi A, Yoshimura A, et al. Late-onset Charcot-Marie-Tooth disease 4F caused by periaxin gene mutation[J]. Neurogenetics, 2012, 13(4): 359-365
[40] Parman Y, Battaloglu E, Baris I, et al. Clinicopathological and genetic study of early-onset demyelinating neuropathy [J]. Brain, 2004, 127(Pt 11): 2540-2550
[41] Otagiri T, Sugai K, Kijima K, et al. Periaxin mutation in Japanese patients with Charcot-Marie-Tooth disease [J]. J Hum Genet, 2006, 51(7): 625-628
[42] Guilbot A, Williams A, Ravise N, et al. A mutation in periaxin is responsible for CMT4F, an autosomal recessive form of Charcot-Marie-Tooth disease[J]. Hum Mol Genet, 2001, 10(4): 415-421
[43] Kijima K, Numakura C, Shirahata E, et al. Periaxin mutation causes early-onset but slow-progressive Charcot- Marie-Tooth disease[J]. J Hum Genet, 2004, 49(7): 376-379
[44] Tanisawa K, Mikami E, Fuku N, et al. Exome sequencing of senescence-accelerated mice (SAM) reveals deleterious mutations in degenerative disease-causing genes[J]. BMC Genomics, 2013, 14: 248
[45] Lawlor M W, Richards M P, De Vries G H, et al. Antibodies to L-periaxin in sera of patients with peripheral neuropathy produce experimental sensory nerve conduction deficits[J]. J Neurochem, 2002, 83(3): 592-600
[46] Straub B K, Boda J, Kuhn C, et al. A novel cell-cell junction system: the cortex adhaerens mosaic of lens fiber cells[J]. J Cell Sci, 2003, 116(Pt 24): 4985-4995
[47] Song S, Landsbury A, Dahm R, et al. Functions of the intermediate filament cytoskeleton in the eye lens[J]. J Clin Invest, 2009, 119(7): 1837-1848
[48] Wakatsuki S,Araki T,Sehara-Fujisawa A.Neuregulin-1/glial growth factor stimulates Schwann cell migration by inducing alpha5 beta1 integrin-ErbB2-focal adhesion kinase complex formation[J].Genes Cells,2014,19(1): 66-77
[49] Napoli I, Noon L A, Ribeiro S, et al. A central role for the ERK-signaling pathway in controlling Schwann cell plasticity and peripheral nerve regeneration in vivo[J]. Neuron, 2012, 73(4):729-742
[50] Woodhoo A, Alonso M B, Droggiti A, et al. Notch controls embryonic Schwann cell differentiation, postnatal myelination and adult plasticity[J]. Nat Neurosci, 2009, 12(7): 839-847
[51] Waite A, Tinsley C L, Locke M, et al. The neurobiology of the dystrophin-associated glycoprotein complex[J]. Ann Med, 2009, 41(5): 344-359
[52] Sherman D L, Wu L M, Grove M, et al. Drp2 and periaxin form Cajal bands with dystroglycan but have distinct roles in Schwann cell growth [J]. J Neurosci, 2012, 32(27): 9419-9428
[53]王慧,任页玫,段英俊,等.L-Periaxin蛋白与Ezrin蛋白相互作用初步分析[J].中国生物化学与分子生物学报(Wang H, Ren YM, Duan Y J, et al. Analysis of the interaction between L-periaxin and ezrin[J].Chin J Biochem Mol Biol), 2014, 30(3): 279-283

基金

国家自然科学基金(No. 31170748); 生物大分子国家重点实验室课题资助(2010年)

PDF(1042 KB)

98

Accesses

0

Citation

Detail

段落导航
相关文章

/