Z-DNA的形成及其与基因转录的关系

黄胜和 吴初新 李东明 饶泽昌 胡成钰

中国生物化学与分子生物学报 ›› 2013, Vol. 29 ›› Issue (8) : 699-703.

PDF(695 KB)
PDF(695 KB)
中国生物化学与分子生物学报 ›› 2013, Vol. 29 ›› Issue (8) : 699-703.
综述

Z-DNA的形成及其与基因转录的关系

  • 黄胜和1),3),吴初新2),李东明1),饶泽昌1),胡成钰3)*
作者信息 +

Z-DNA Formation and Its Link with Gene Transcription

  • HUANG Sheng-He1),3),  WU Chu-Xin2),  LI Dong-Ming1), RAO Ze-Chang1),  HU Cheng-Yu3)*
Author information +
文章历史 +

摘要

Z-DNA是一种非常独特的DNA二级结构.与B-DNA相比,Z-DNA最显著的结构特征是左手螺旋和磷酸-核糖骨架呈“zigzag”状. 虽然目前对Z-DNA功能的了解还不确切,但毫无疑问,Z-DNA与基因的转录和调控密切相关. 一方面,在体内Z-DNA在基因转录过程中产生;另一方面,分布于启动子等不同区域的Z-DNA又可以反过来调控基因的转录, 即Z-DNA能够增强一些基因转录,也能抑制某些基因的表达,但其调控机制还不清楚.这种调控似乎与Z-DNA在启动子中的位置、基因和细胞类型有关.研究Z-DNA的形成及其与基因转录的关系对理解基因转录调控理论具有十分重要的意义.

Abstract

Z-DNA is a special secondary structure of DNA. Different from B-DNA, Z-DNA is a left-handed helical conformation in which the double helix winds in a zigzag pattern. Increasing evidence revealed that Z-DNA closely related to gene transcription and gene regulation. The formation of Z-DNA can be induced during gene transcription. The scattering of Z-DNA in different regions of a promoter could change the gene transcription.Therefore, Z-DNA is able to enhance or repress gene transcription, however with unclear mechanism. The positional effect of Z-DNA in the promoters in context of different genes or cells can be versatile. The knowledge about the relationship between Z-DNA and gene regulation is an important aspect for us to further understand the process of gene transcription.

关键词

Z-DNA / 基因转录 / 启动子 / 基因调控

Key words

Z-DNA / gene transcription / promoter / gene regulation

引用本文

导出引用
黄胜和 吴初新 李东明 饶泽昌 胡成钰. Z-DNA的形成及其与基因转录的关系[J]. 中国生物化学与分子生物学报, 2013, 29(8): 699-703
Z-DNA Formation and Its Link with Gene Transcription[J]. Chinese Journal of Biochemistry and Molecular Biology, 2013, 29(8): 699-703
中图分类号: Q751   

参考文献

[1] Pohl F M, Jovin T M. Salt-induced co-operative conformational change of a synthetic DNA: equilibrium and kinetic studies with poly (dG-dC)[J]. J Mol Biol, 1972, 67(3):375-396
[2] Wang A H, Quigley G J, Kolpak F J, et al. Molecular structure of a left-handed double helical DNA fragment at atomic resolution[J]. Nature, 1979, 282(5740):680-686
[3] Wang G, Vasquez K M. Z-DNA, an active element in the genome[J]. Front Biosci, 2007, 12:4424-4438
[4] Bae S, Kim D, Kim K K, et al. Intrinsic Z-DNA is stabilized by the conformational selection mechanism of Z-DNA-binding proteins[J]. J Am Chem Soc, 2011, 133(4):668-671
[5] de Rosa M, de Sanctis D, Rosario A L, et al. Crystal structure of a junction between two Z-DNA helices[J]. Proc Natl Acad Sci U S A, 2010, 107(20):9088-9092
[6] Rich A, Nordheim A, Wang A H. The chemistry and biology of left-handed Z-DNA[J]. Annu Rev Biochem, 1984, 53:791-846
[7] Haniford D B, Pulleyblank D E. The in-vivo occurrence of Z-DNA[J].J Biomol Struct Dyn, 1983, 1(3):593-609
[8] Yang L, Wang S, Tian T, et al. Advancements in Z-DNA: Development of inducers and stabilizers for B to Z transition[J]. Curr Med Chem, 2012, 19(4):557-568
[9] Egli M, Williams L, Gao Q, et al. Structure of the pure-spermine form of Z-DNA (magnesium free) at 1-A resolution[J]. Biochemistry, 1991, 30(48):11388-11402
[10] 汤雅男, 杨攀, 胡成钰. Z-DNA及其生物学功能[J]. 生命科学(Tang Y N,Yang P,Hu C Y. Z-DNA and its biological function[J]. Chin Bull Life Sci), 2009, 21(1):72-75
[11] Temiz N A, Donohue D E, Bacolla A, et al. The role of methylation in the intrinsic dynamics of B- and Z-DNA[J]. PLoS One, 2012, 7(4): e35558
[12] Moller A, Nordheim A, Kozlowski S A, et al. Bromination stabilizes poly(dG-dC) in the Z-DNA form under low-salt conditions[J]. Biochemistry, 1984, 23(1):54-62
[13] Brown B A 2nd, Rich A. The left-handed double helical nucleic acids[J]. Acta Biochim Pol, 2001, 48(2):295-312
[14] Oh D B, Kim Y G, Rich A. Z-DNA-binding proteins can act as potent effectors of gene expression in vivo[J]. Proc Natl Acad Sci U S A, 2002, 99(26):16666-16671
[15] Herbert A, Alfken J, Kim Y G, et al. A Z-DNA binding domain present in the human editing enzyme, double-stranded RNA adenosine deaminase[J]. Proc Natl Acad Sci U S A, 1997, 94(16):8421-8426
[16] Schwartz T, Behlke J, Lowenhaupt K, et al. Structure of the DLM-1-Z-DNA complex reveals a conserved family of Z-DNA-binding proteins[J]. Nat Struct Biol, 2001, 8(9):761-765
[17] Kahmann J D, Wecking D A, Putter V, et al. The solution structure of the N-terminal domain of E3L shows a tyrosine conformation that may explain its reduced affinity to Z-DNA in vitro[J]. Proc Natl Acad Sci U S A, 2004, 101(9):2712-2717
[18] Hu C Y, Zhang Y B, Huang G P, et al. Molecular cloning and characterization of a fish PKR-like gene from cultured CAB cells induced by UV in activated virus[J]. Fish Shellfish Immunol, 2004, 17(4):353-366
[19] Yang P J, Wu C X, Li W, et al. Cloning and functional analysis of PKZ (PKR-like) from grass carp (Ctenopharyngodon idellus) [J]. Fish Shellfish Immunol, 2011, 31(6):1173-1178
[20] Wu C X, Wang S J, Lin G, et al. The Zα domain of PKZ from Carassius auratus can bind to d(GC)n in negative supercoils[J]. Fish Shellfish Immunol, 2010, 28(5-6):783-788
[21] 陶敏, 吴初新, 杨攀, 等. 鲫鱼PKR-like Zα与d (GC) 13质粒的结合及其适应性进化[J]. 细胞生物学杂志(Tao M, Wu C X, Yang P, et al. Binding of the Za from Carassius auratus PKR-like to d(GC)13 Plasmid and its analysis of adaptive evolution[J]. Chin J Cell Biol), 2008, 30(4):494-498
[22] Lu P, Deng S, Zhu Y, et al. The Zα domain of fish PKZ facilitates the B–Z conformational transition of oligonucleotide DNAs with d(GC)n inserts[J]. Acta Biochim Biophys Sin (Shanghai), 2012, 44 (11): 957-963
[23] 夏玉洁, 吴初新, 马梅生, 等. Poly d(GC)在负超螺旋下形成的Z-DNA[J]. 细胞生物学杂志(Xia Y J, Wu C X, Ma M S, et al. Formation of Z-DNA in Poly d(GC) in the Presence of Negatively Supercoil[J]. Chin J Cell Biol), 2009, 31(6):867-870
[24] Bothe J R, Lowenhaupt K, AI-Hashimi H M. Sequence-specific B-DNA flexibility modulates Z-DNA formation[J]. J Am Chem Soc, 2011, 133(7): 2016-2018
[25] Liu L F, Wang J C. Supercoiling of the DNA template during transcription[J]. Proc Natl Acad Sci U S A, 1987, 84(20):7024-7027
[26] Rich A, Zhang S. Z-DNA: the long road to biological function[J]. Nat Rev Genet, 2003, 4(7):566-572
[27] Wittig B, Dorbic T, Rich A. Transcription is associated with Z-DNA formation in metabolically active permeabilized mammalian cell nuclei[J]. Proc Natl Acad Sci U S A, 1991, 88(6):2259-2263
[28] Wolfl S, Wittig B, Rich A. Identification of transcriptionally induced Z-DNA segments in the human c-myc gene[J]. Biochim Biophys Acta, 1995, 1264(3):294-302
[29] Wittig B, Wolfl S, Dorbic T, et al. Transcription of human c-myc in permeabilized nuclei is associated with formation of Z-DNA in three discrete regions of the gene[J]. EMBO J, 1992, 11(12):4653-4663
[30] Schroth G P, Chou P J, Ho P S. Mapping Z-DNA in the human genome, Computer-aided mapping reveals a nonrandom distribution of potential Z-DNA-forming sequences in human genes[J]. J Biol Chem, 1992, 267(17):11846-11855
[31] Aboul-ela F, Bowater R P, Lilley D M. Competing B-Z and helix-coil conformational transitions in supercoiled plasmid DNA[J]. J Biol Chem, 1992, 267(3):1776-1785
[32] Sheridan S D, Opel M L, Hatfield G W. Activation and repression of transcription initiation by a distant DNA structural transition[J]. Mol Microbiol, 2001, 40(3):684-690
[33] Rothenburg S, Koch-Nolte F, Rich A, et al. A polymorphic dinucleotide repeat in the rat nucleolin gene forms Z-DNA and inhibits promoter activity[J]. Proc Natl Acad Sci U S A, 2001, 98(16):8985-8990
[34] Nordheim A, Rich A. Negatively supercoiled simian virus 40 DNA contains Z-DNA segments within transcriptional enhancer sequences[J]. Nature, 1983, 303(5919):674-679
[35] Liu R, Liu H, Chen X, et al. Regulation of CSF1 promoter by the SWI/SNF-like BAF complex[J]. Cell, 2001, 106(3):309-318
[36] Liu H, Mulholland N, Fu H, et al. Cooperative activity of BRG1 and Z-DNA formation in chromatin remodeling[J]. Mol Cell Biol, 2006, 26(7):2550-2559
[37] Mulholland N, Xu Y, Sugiyama H, et al. SWI/SNF-mediated chromatin remodeling induces Z-DNA formation on a nucleosome[J]. Cell Biosci, 2012, 2:3
[38] Galan J E, Curtiss R 3rd. Expression of Salmonella typhimurium genes required for invasion is regulated by changes in DNA supercoiling[J]. Infect Immun, 1990, 58(6):1879-1885
[39] Ditlevson J V, Tornaletti S, Belotserkovskii B P, et al. Inhibitory effect of a short Z-DNA forming sequence on transcription elongation by T7 RNA polymerase[J]. Nucleic Acids Res, 2008, 36(10):3163-3170
[40] Oh D B, Kim Y G, Rich A. Z-DNA-binding proteins can act as potent effectors of gene expression in vivo[J]. Proc Natl Acad Sci U S A, 2002, 99(26):16666-16671
[41] Wong B, Chen S, Kwon J A, et al. Characterization of Z-DNA as a nucleosome-boundary element in yeast Saccharomyces cerevisiae[J]. Proc Natl Acad Sci U S A, 2007, 104(7):2229-2234
[42] Ray B K, Dhar S, Shakya A, et al. Z-DNA-forming silencer in the first exon regulates human ADAM-12 gene expression[J]. Proc Natl Acad Sci U S A, 2011, 108(1):103-108
[43] Searle S, Blackwell J M. Evidence for a functional repeat polymorphism in the promoter of the human NRAMP1 gene that correlates with autoimmune versus infectious disease susceptibility[J]. J Med Genet, 1999, 36(4):295-299
[44] Takahashi K, Satoh J, Kojima Y, et al. Promoter polymorphism of SLC11A1 (formerly NRAMP1) confers susceptibility to autoimmune type 1 diabetes mellitus in Japanese[J]. Tissue Antigens, 2004, 63(3):231-236
[45] Suram A, Rao K S, Latha K S, et al. First evidence to show the topological change of DNA from B-DNA to Z-DNA conformation in the hippocampus of Alzheimer's brain[J]. Neuromolecular Med, 2002, 2(3):289-297
[46]Cer R Z, Donohue D E, Mudunuri U S, et al. Non-B DB v2.0: a database of predicted non-B DNA-forming motifs and its associated tools[J]. Nucleic Acids Res, 2013, 41(D1):D94-D100

基金

 国家自然科学基金资助项目(No.30860218)

PDF(695 KB)

1326

Accesses

0

Citation

Detail

段落导航
相关文章

/