Tat protein plays an important role in HIV transcription and replication, which can trans-activate HIV transcription. Transcription of human immunodeficiency virus (HIV-1) is activated by viral Tat protein which regulates the transcription and elongation of HIV long terminal repeat (LTR). HIV-1 Tat protein is a substrate for the deacetylase sirtuin 1 (SIRT1). The status of Tat, whether it is acetylated or not in the transcription process, is highly precise controlled. If the acetylation state of Tat was interfered in the transcription process, HIV transcription could also be subject to be interfered. Recent study showed that histone deacetylase SIRT1 protein regulates Tat-mediated trans-activation of HIV transcription. SIRT1 could deacetylate acetylated Tat, thus it can facilitate the process of HIV transcription recycling. The combination of Tat and SIRT1 can also make the p65 subunit of nuclear transcription factor NF-κB be in super-acetylation state, resulting in the expression of virus genome. The relationship between SIRT1 and the Tat provides a new direction for the treatment of HIV.
SANG Wei-Wei, ZHANG Hong-Sheng.
Effect of SIRT1 on the transcription of HIV-1 induced by Tat[J]. Chinese Journal of Biochemistry and Molecular Biology, 2010, 26(11): 975-980
[1] Blazek D, Peterlin B M. Tat-SIRT1 Tango [J]. Mol Cell, 2008, 29(5): 539-540
[2] Pumfery A, Deng L, Maddukuri A, et al. Chromatin remodeling and modification during HIV-1 Tat activated transcription [J]. Curr HIV Res, 2003, 1(3): 343-362
[3] Demarchi F, DAgaro P, Falaschi A, et al. In vivo footprinting analysis of constitutive and inducible protein-DNA interactions at the long terminal repeat of human immunodeficiency virus type 1 [J]. J Virol, 1993, 67(12):7450-7460
[4] Pazin M J, Sheridan P L, Cannon Κ, et al. NF-κB mediated chromatin reconfiguration and transcriptional activation of the HIV-1 enhancer in vitro [J]. Genes Dev, 1996, 10(1): 37-49
[5] Coull J J, Romerio F, Sun J M, et al. The human factors YY1 and LSF repress the human immunodeficiency virus type 1 long terminal repeat via recruitment of histone deacetylase 1 [J]. J Virol, 2000, 74(15): 6790- 6799
[6] Miyake A, Ishida T, Yamagishi M, et al. Inhibition of active HIV-1 replication by NF-κB inhibitor DHMEQ[J]. Microbes Infect, 2010, 12(5): 400-408
[7] Wan F, Anderson D E, Barnitz R A, et al. Ribosomal protein S3:a ΚH domain subunit in NF-κB complexes that mediates selective gene regulation [J]. Cell, 2007, 131(5): 927-939
[8] Pugliese A, Vidotto V, Beltramo T, et al. A review of HIV-1 Tat protein biological effects [J]. Cell Biochem Funct, 2005, 23 (4): 223- 227
[9] Li C J. Therapeutic biology: check point pathway activation therapy, HIV Tat, and trans-kingdom RNA interference [J]. J Cell Physiol, 2006, 209 (3): 695 - 700
[10] Zhang H S, Zhou Y, Wu M R, et al. Resveratrol inhibited Tat-induced HIV-1 LTR transactivation via NAD+-dependent SIRT1 activity [J]. Life Sci, 2009, 85(13-14): 484-489
[11] Romani B, Engelbrecht S, Richard H, et al. Functions of Tat: the versatile protein of human immune-deficiency virus type 1 [J]. J General Virol, 2010, 91(Pt 1): 1-12
[12] Dorr A, Κiermer V, Pedal A, et al. Transcriptional synergy between Tat and PCAF is dependent on the binding of acetylated Tat to the PCAF bromodomain [J]. EMBO J, 2002, 21(11): 2715-2723
[13] 孙晓娜,杨怡姝,曾毅. 反式激活应答元件RNA 在HIV-1 感染中的作用[J].中国生物化学与分子生物学报(Sun Xiao-Na,Yang Yi-Shu,Zeng Yi.The Role of TAR RNA in HIV-1 infection[J]. Chin J Biochem Mol Biol), 2010, 26(4): 301-305
[14] Dandekar D H, Ganesh Κ N, Mitra D. HIV-1 Tat directly binds to NF-κB enhancer sequence: role in viral and cellular gene expression [J]. Nucleic Acids Res, 2004, 32 (4): 1270-1278
[15] Tasara T, Hottiger M O, Hubscher U. Functional genomics in HIV-1 virus replication: protein-protein interactions as a basis for recruiting the host cell machinery for viral propagation [J]. Biol Chem, 2001, 382 (7): 993-999
[16] Brigati C, Giacca M, Noonan D M. HIV Tat, its TAR gets and the control of viral gene expression [J]. FEMS Microbiol Lett, 2003, 220 (1): 57-65
[17] Chen R C, Liu M, Zhang Κ, et al. Isolation and functional characterization of P-TEFb-associated factors that control general and HIV-1 transcriptional elongation [J]. J Method, 2010 (in press)
[18] Zhang T, Κraus W L. SIRT1-dependent regulation of chromatin and transcription: Linκing NAD+ metabolism and signaling to the control of cellular functions [J]. Biochim Biophys Acta, 2010, 1804(8): 1666-1675
[19] Lusic M, Marcello A, Cereseto A, et al. Regulation of HIV-1 gene expression by histone acetylation and factor recruitment at the LTR promoter [J]. EMBO J, 2003, 22(24): 6550-6561
[20] Mahmoudi T, Parra M, Vries R G, et al. The SWI /SNF chromatin-remodeling complex is a cofactor for Tat transactivation of the HIV promoter [J]. J Biol Chem, 2006, 281(29): 19960-19968
[21] Benkirane M, Chun R F, Xiao H, et al. Activation of integrated provirus requires histone acetyltransferase.p300 and P/CAF are coactivators for HIV-1 Tat [J]. J Biol Chem, 1998, 273(38): 24898-24905
[22] Deng L, de la Fuente C, Fu P, et al. Acetylation of HIV-1 Tat by CBP/P300 increases transcription of integrated HIV-1 genome and enhances binding to core histones [J]. Virology, 2000, 277(2): 278-295
[23] Deng L, Wang D, de la Fuente C, et al. Enhancement of the p300 HAT activity by HIV-1 Tat on chromatin DNA [J]. Virology, 2001, 289(2): 312-326.
[24] Mujtaba S, He Y, Zeng L, et al. Structural basis of lysine-acetylated HIV-1 Tat recognition by PCAF bromodomain [J]. Mol Cell, 2002, 9(3): 575-586
[25] Vardabasso C, Manganaro L, Lusic M, et al. The histone chaperone protein nucleosome assembly protein-1(hNAP-1)binds HIV-1 Tat and promotes viral transcription [J]. Retrovirology, 2008, 5: 8
[26] Sapountzi V, Logan I R, Nelson G, et al. Phosphorylation of Tatinteractive protein 60 kDa by protein κinase C epsilon is important for its subcellular localization [J]. Int J Biochem Cell Biol, 2008, 40(2): 236-244
[27] Raha T, Cheng S W, Green M R. HIV-1 Tat stimulates transcription complex assembly through recruitment of TBP in the absence of TAFs [J]. PLoS Biol, 2005, 3(2): e44
[28] Yamakuchi M, Ferlito M, Lowenstein C J. miR-34a repression of SIRT1 regulates apoptosis [J].Proc Natl Acad Sci U S A, 2008, 105(36): 13421-13426
[29] Gray S G, Ekstrom T J. The human histone deacetylase family [J]. Exp Cell Res, 2001, 262 (2): 75- 83
[30] Pagans S, Pedal A, North B J, et al. SIRT1 regulates HIV transcription via Tat deacetylation [J]. PLoS Biol, 2005, 3(2): e41
[31] Michan S, SinclairD. Sirtuins in mammals: insights into their biological function [J]. Biochem J, 2007, 404(1): 1-13
[32] Prozorovski T, Schulze-Topphoff U, Glumm R, et al. Sirt1 contributes critically to the redox-dependent fate of neural progenitors [J]. Nat Cell Biol, 2008, 10 (4): 385-394
[33] Κwon H S, Brent M M, Getachew R, et al. Human immunodeficiency virus type 1 Tat protein inhibits the SIRT1 deacetylase and induces T-cell hyperactivation [J]. Cell Host Microbe, 2008, 3(3): 158-167
[34] 罗兰,高政南,程丽静,等. SIRT1 与基因转录[J].中国生物化学与分子生物学报 (Luo Lan,Gao Zheng- Nan,Cheng Li-Jing et al.SIRT1 in transcription regulation [J]. Chin J Biochem Mol Biol), 2007, 23 (3): 187-193
[35] Lavu S, Boss O, Elliott P J, et al. Sirtuins——novel therapeutic targets to treat age-associated diseases [J]. Nat Rev Drug Discov, 2008, 7(10): 841-853
[36] 张红胜,周玥,许菲. AMPK,SIRT1与能量代谢[J].国际病理科学与临床杂志 (Zhang H S, Zhou Y, Xu F. AMPΚ, SIRT1, and energy metabolism [J]. Int J Pathol Clin Med), 2009, 29(3): 202-205
[37] Easley R, Van Duyne R, Coley W, et al. Chromatin dynamics associated with HIV-1 Tat-activated transcription [J].Biochim Biophys Acta, 2010, 1799(3-4): 275-285
[38] Zhang H S, Wu M R. SIRT1 regulates Tat-induced HIV-1 transactivation through activatingAMP-activated protein kinase [J].Virus Res, 2009, 146(1-2): 51-57
[39] Zhang H S, Sang W W, Wang Y O, et al. Nicotinamide phosphoribosyl-transferase /sirtuin 1 pathway is involved in human immunodeficiency virus type 1 Tat-mediated long terminal repeat transactivation [J]. J Cell Biochem, 2010, 110(6): 1464-1470
[40] Yeung F, Hoberg J E, Ramsey C S, et al. Modulation of NF-κB-dependent transcription and cell survival by the SIRT1 deacetylase [J]. EMBO J, 2004, 23(12): 2369-2380
[41] Yamaκuchi M, Lowenstein C J. MiR-34, SIRT1 and p53, the feedback loop [J]. Cell Cycle, 2009, 8(5): 712-715