适应性免疫的起源一直是免疫学研究的关键问题.文昌鱼被认为是最接近于脊椎动物的祖先 自从被发现以来一直是研究脊椎动物起源与进化机制的经典模式动物.为了在文昌鱼中寻找适应性免疫系统的分子证据,采用金黄色葡萄球菌感染文昌鱼以调查免疫的起源.应用抑制性差减杂交(SSH)技术,通过对差减文库克隆序列的测定,共获得588个表达序列标签(EST).对这些EST进行生物信息学分析和进一步功能分类,发现了一些免疫上调基因,如免疫调控基因、凋亡相关基因、细胞黏附相关基因、转录相关基因、信号传导相关基因等,以及一些非免疫相关基因;这些基因在文昌鱼中绝大多数为首次报道.金黄色葡萄球菌差减文库的成功构建,为调查文昌鱼抗细菌感染的分子事件提供了重要线索,对于这些新发现基因的进一步研究将有助于深入了解免疫系统起源与进化的机制.
Abstract
The evolution of the adaptive immune system is one of the fundamental questions in immunology. Amphioxus, the closest living invertebrate relative to the vertebrates, has been widely regarded as one of the most important species for the investigation of the origin and evolution of the vertebrates. In order to search the molecular evidences which are involved in the adaptive immune system evolution, amphioxus was infected by Staphylococcus aureusand the subtractive library was constructed. In the library, 588 novel expressed sequence tags (ESTs) were obtained through suppression subtractive hybridization (SSH), and most of the identified ESTs were reported for the first time in amphioxus. Bioinformatics analysis showed that the genes encoded by these novel ESTs were involved in various functions such as immune response, apoptosis, cell adhesion, transcriptional regulation, signal transduction and so on. It is the first time to report theconstruction of the suppression subtractive hybridization library from Staphylococcus aureus challenged amphioxus. The library provides the important clues for further investigations of the molecular events that occurred during the development of adaptive immune system, and further functional studies of these newly identified genes will be helpful for the understanding of the origin and phylogeny of the vertebrate immune system.
关键词
适应性免疫 /
文昌鱼 /
差减杂交 /
免疫起源
{{custom_keyword}} /
Key words
adaptive immunity /
amphioxus /
subtractive hybridization /
origin of immunity
{{custom_keyword}} /
中图分类号:
Q78
{{custom_clc.code}}
({{custom_clc.text}})
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 王蔚,宿兵,王义权. 文昌鱼特异的基因倍增[J]. 遗传 (Wang Wei, Su Bing, Wang Yi-Quan. Gene duplications specific to the amphioxus lineage [J]. Hereditas), 2005, 27(1) :143-149
[2] 刘岑杰, 黄惠芳, 马飞, 等.无颌类脊椎动物适应性免疫系统的进化[J]. 遗传 (Liu Cen-Jie, Huang Hui-Fang, Ma Fei, et al. The evolution of adaptive immunity system of agnathan vertebrates [J]. Hereditas), 2008, 30(1): 13-19
[3] Pancer Z, Cooper M D. The evolution of adaptive immunity [J]. Annu Rev Immunol, 2006, 24:497-518
[4] Cooper M D, Alder M N. The evolution of adaptive immune systems [J]. Cell, 2006, 124(4):815-822
[5] Pancer Z, Mayer W E, Klein J, et al. Prototypic T cell receptor and CD4-like coreceptor are expressed by lymphocytes in the agnathan sea lamprey [J]. Proc Natl Acad Sci U S A, 2004, 101(36):13273-13278
[6] Mayer W E, Uinuk-Ool T, Tichy H, et al. Isolation and characterization of lymphocyte-like cells from a lamprey[J]. Proc Natl Acad Sci U S A 2002, 99(22):14350-14355
[7] Du J, Yu Y, Tu H, et al. New insights on macrophage migration inhibitory factor: based on molecular and functional analysis of its homologue of Chinese amphioxus [J]. Mol Immunol, 2006, 43(13):2083-2088
[8] Du J, Xie X, Chen H, et al. Macrophage migration inhibitory factor (MIF) in Chinese amphioxus as a molecular marker of immune evolution during the transition of invertebrate/ vertebrate[J]. Dev Comp Immunol, 2004, 28(10):961-971 [9] Yuan S C, Yu Y, Huang S, et al. Bbt-TNFR1 and Bbt-TNFR2, two tumor necrosis factor receptors from Chinese amphioxus involve in host defense [J]. Mol Immunol, 2007, 44(5):756-762
[10] Yu Y, Yuan S, Yu Y, et al. Molecular and biochemical characterization of galectin from amphioxus: primitive galectin of chordates participated in the infection processes [J]. Glycobiology, 2007, 17(7):774-783
[11] Yu C, Dong M, Wu X, et al. Genes “Waiting" for recruitment by the adaptive immune system: the insights from amphioxus[J]. J Immunol, 2005, 174(6):3493-3500
[12] Huang G, Liu H, Han Y, et al. Profile of acute immune response in Chinese a mphioxus upon Staphylococcus aureus and Vibrio parahaemolyticus infection [J]. Dev Comp Immunol, 2007, 31(10):1013-1023
[13] Huang G, Xie X, Han Y, et al. The identification of lymphocyte-like cells and lymphoid-related genes in amphioxus indicates the twilight for the emergency of adaptive immune system [J]. PLoS ONE, 2007, 2(2):e206
[14] 陈慧萍,姜孝玉,涂洪斌,等. 金钱鱼毒腺cDNA表达文库的构建及EST序列分析[J]. 中国生物化学与分子生物学报 (Chen H P, Jiang X Y, Tu H B, et al. Construction of cDNA expression library from the venom of Scatophagus argus and EST analysis[J]. Chin J Biochem Mol Biol), 2004, 20(2):166-170
[15] 顾克余,翟虎渠. 抑制性扣除杂交技术(SSH)及其在基因克隆上的研究进展[J]. 生物技术进展 (Gu Ke-Yu, Zhai Hu-Qv. Advances in the study on the suppression subtractive hybridization [J]. Biotechnol Informa), 1999, 15(2):13-16
[16] 张士璀,郭斌,梁宇君. 我国文昌鱼研究50年[J]. 生命科学 (Zhang Shi-Cui, Guo Bin, Liang Yu-Jun. Fifty years of amphioxus study in China [J].Chin Bull Life Sci ), 2008, 20(1):64-67
[17] Cannon J P, Haire R N, Litman G W. Identification of diversified genes that contain immunoglobulin-like variable regions in a protochordate [J]. Nat Immunol, 2002, 3(12):1200-1207
[18] Liew F Y, Xu D, Brint E K, et al. Negative regulation of toll-like receptor-mediated immune responses [J]. Nat Rev Immunol, 2005, 5(6):446-458
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}