全文下载排行

  • 一年内发表的文章
  • 两年内
  • 三年内
  • 全部

Please wait a minute...
  • 全选
    |
  • 综述
    尚军, 吴旺泽, 马永贵
    中国生物化学与分子生物学报. 2022, 38(11): 1467-1476. https://doi.org/10.13865/j.cnki.cjbmb.2022.03.1604
    摘要 (2089) PDF全文 (944)   可视化   收藏
    众所周知,固着生长的植物经常受到环境中各种生物和非生物胁迫的威胁。所以在漫长的进化过程中,植物必须将多样的环境信号整合到其发育过程中,以实现适应性形态的发生和代谢途径的精确调控,最终使植物完成整个生长周期。研究显示,苯丙烷代谢作为植物重要的次级代谢途径之一,其代谢产物,例如木质素、孢粉素、花青素和有机酸等,在调控植物适应性生长的过程中发挥着重要功能。特别是在药用植物中,苯丙烷代谢还与众多药用活性成分的合成息息相关,几乎所有包含苯丙烷骨架的天然药效成分均由苯丙烷代谢途径直接或间接合成,例如黄酮类、萜类和酚类等。此外,经苯丙烷代谢途径产生的一些次级代谢产物还能由植物根系外泌到周际土壤中,通过改变根系微生物的菌群生态,而影响植物生长和抵抗生物或非生物胁迫的能力。同时,苯丙烷代谢介导的这种植物-微生物互作也与药用植物的道地品质密不可分。本文综述了近年来植物苯丙烷代谢途径的最新研究进展,重点对该代谢途径中代谢产物的生理功能及表达调控机制进行了介绍,以期更深入地理解药用植物苯丙烷代谢与药材性状之间的潜在关系,旨在指导优良中草药的遗传育种,以进一步促进我国中医药事业的蓬勃发展。
  • 特约综述
    彭建, 张宏权
    中国生物化学与分子生物学报. 2022, 38(10): 1269-1284. https://doi.org/10.13865/j.cnki.cjbmb.2022.07.1147
    摘要 (1958) PDF全文 (576)   可视化   收藏
    染色质可及性(chromatin accessibility)作为一种衡量染色质结合因子与染色质DNA结合能力高低的染色质属性,是评价染色质结构稳态的重要指标之一,在多种细胞核进程中扮演重要角色,包括基因转录调控以及DNA损伤修复等。该属性的异常调控与多种疾病的发生发展密切相关,包括肿瘤以及神经退行性疾病等。对于该属性探究已经成为生命科学与疾病领域的热点。伴随越来越多的新技术应运而生,例如染色质构象捕获技术、高通量测序技术以及两种技术的结合等。随着技术的进步,多种参与调控染色质可及性的因素被发现和总结,包括核小体占位、组蛋白修饰以及非编码RNA等。多项大规模的染色质组学数据绘制了多种疾病的染色质可及性图谱,为揭示疾病的发生发展与染色质可及性之间的关系提供了数据支持。同时,随着单细胞染色质可及性测序技术的发展,实现了对细胞类型染色质层面的划分,弥补了单纯依赖基因表达划分细胞类型的不足。本文将从染色质的组成与可及性、影响染色质可及性的因素、染色质可及性的检测方法,以及染色质可及性与癌症的关系等方面简要阐述染色质可及性的研究进展。
  • 综述
    米海潮, 史敏, 崔芳
    中国生物化学与分子生物学报. 2022, 38(9): 1133-1140. https://doi.org/10.13865/j.cnki.cjbmb.2022.01.1497
    摘要 (1734) PDF全文 (554)   可视化   收藏
    铁是血红素、线粒体呼吸链复合体和各种生物酶的重要辅助因子,参与氧气运输、氧化还原反应和代谢物合成等生物过程。铁蛋白(ferritin)是一种铁存储蛋白质,通过储存和释放铁来维持机体内铁平衡。铁自噬(ferritinophagy)作为一种选择性自噬方式,介导铁蛋白降解释放游离铁,参与细胞内铁含量的调控。适度铁自噬维持细胞内铁含量稳定,但铁自噬过度会释放出大量游离铁。通过芬顿 (Fenton)反应催化产生大量的活性氧(reactive oxygen species, ROS),发生脂质过氧化造成细胞受损。因此,铁自噬在维持细胞生理性铁稳态中发挥至关重要的作用。核受体共激活因子4 (nuclear receptor co-activator 4, NCOA4)被认为是铁自噬的关键调节因子,与铁蛋白靶向结合,并传递至溶酶体中降解释放游离铁,其介导的铁自噬构成了铁代谢的重要组成部分。最新研究表明,NCOA4受体内铁含量、自噬、溶酶体和低氧等因素的调控。NCOA4介导的铁蛋白降解与铁死亡(ferroptosis)有关。铁死亡是自噬性细胞死亡过程。铁自噬通过调节细胞铁稳态和细胞ROS生成,成为诱导铁死亡的上游机制,与贫血、神经退行性疾病、癌症、缺血/再灌注损伤与疾病的发生发展密切相关。本文针对NCOA4介导的铁自噬通路在铁死亡中的功能特征,探讨NCOA4在这些疾病中的作用,可能为相关疾病的治疗提供启示。
  • 综述
    姜珊, 关一夫, 李硕
    中国生物化学与分子生物学报. 2023, 39(1): 42-53. https://doi.org/10.13865/j.cnki.cjbmb.2022.06.1051
    细胞焦亡(pyroptosis)又称细胞炎性坏死,是Gasdermin蛋白家族介导的一种程序性细胞死亡,表现为细胞不断肿胀直至细胞膜破裂,导致细胞内容物释放,进而激活强烈的炎症反应。近年来,细胞焦亡在肿瘤发病机制中的作用变得越来越突出,焦亡信号通路分子及细胞焦亡过程中释放的多种炎症介质与肿瘤的发生、发展及对肿瘤化疗和免疫治疗的反应密切相关。由于肿瘤的异质性,细胞焦亡在不同肿瘤中的作用并不相同,因此有必要研究细胞焦亡在不同肿瘤中的具体作用机制。从药理学角度,寻求促进生成炎症小体或激活焦亡通路的分子底物,为肿瘤药物的研发和治疗提供更多思路。细胞焦亡在一定程度上也解答了肿瘤化疗和免疫治疗副作用产生的原因。细胞焦亡在肿瘤治疗过程中是 “双刃剑”,如何调节药物在肿瘤组织、正常组织和免疫微环境中诱导细胞焦亡的方式和程度,对于提高肿瘤的化疗和免疫治疗效果,降低毒副作用具有重要的意义。本文就细胞焦亡的类型及分子机制,细胞焦亡在肿瘤的发生发展及其在肿瘤化疗、放射治疗、中药治疗和免疫治疗过程中发挥的作用进行综述,以期为临床肿瘤治疗和预后分析提供新靶点。
  • 综述
    闫晓俊, 文佳, 王冬来
    中国生物化学与分子生物学报. 2022, 38(8): 971-980. https://doi.org/10.13865/j.cnki.cjbmb.2022.01.1496
    p53是细胞内最重要的抑癌蛋白质之一;细胞对p53分子功能的调控主要通过一系列翻译后修饰(PTMs)完成。其中,乙酰化修饰既可在总体水平调控p53的转录活性,又可位点特异性地调控p53依赖的转录选择性,进而精确控制p53在细胞周期阻滞、凋亡、衰老、自噬和代谢等关键生物学过程中的作用。本综述以p53乙酰化修饰研究的时间脉络为轴,首先总结了发生在p53各结构域内乙酰化修饰的建立机制,包括催化p53位点特异性乙酰化发生的乙酰基转移酶,以及各位点乙酰化修饰对p53分子功能调节的机制。其次,本综述总结了参与去除p53乙酰化修饰的关键去乙酰基酶家族,以及这些因子参与调控p53分子功能的生物学意义。同时,本文综述了能够特异性读取p53乙酰化修饰状态的识别蛋白质,以及这些识别蛋白质与p53互作,进而协同调控下游靶基因转录的分子调控网络。此外,本文概述了p53乙酰化修饰与其它类型翻译后修饰之间的“交谈”,以及这些修饰之间通过时空特异互作方式影响p53功能的分子机制。最后,本文基于p53乙酰化修饰,对肿瘤分子医学的研究前景进行讨论与展望。
  • 综述
    巢明坤, 伊旭东, 庞卫军
    中国生物化学与分子生物学报. 2022, 38(11): 1477-1485. https://doi.org/10.13865/j.cnki.cjbmb.2022.04.1548
    脂肪组织是一种主要的能量储存和内分泌器官。脂肪生成是一系列复杂的细胞分化过程,受到细胞营养水平、激素和代谢物等调节。哺乳动物雷帕霉素靶蛋白(mammalian target of rapamycin, mTOR)复合物包括哺乳动物雷帕霉素靶蛋白复合体1(mammalian target of rapamycin complex 1,mTORC1)和mTORC2两种蛋白质复合体。mTOR复合物含有的脂质激酶样域奠定了mTOR通路调控脂肪生成的基础。对mTORC1和mTORC2的部分组成蛋白质研究也验证了mTOR调控成脂的功能。基于前期的研究,我们综述了miR-199a-3p、miR-103、miR-188、68 kD有丝分裂中的Src相关底物(Src-associated substrate in mitosis of 68 kD,Sam68)、内皮抑素等物质通过mTORC1和mTORC2蛋白质复合体调控脂肪生成的机制。同时,进一步构建了包括胰岛素/IGF通路、PI3K-AKT通路、氨基酸通路、AMPK通路、cAMP通路、cGMP通路、NOTCH通路以及影响上述通路的bta-miR-150、4-O-甲基蔗糖和多种蛋白质在内的mTOR信号通路调控脂肪生成的网络。本文主要综述了mTOR复合物的特性和mTOR通路调控脂肪生成方面的最新研究进展,指出mTORC2具有调控脂质摄取和脂质分解的作用,调控mTORC1功能的作用,但是有关mTORC2的研究相对mTORC1较少,因此,对脂肪生成和脂质代谢的进一步研究需要集中于mTORC2。
  • 研究论文
    前插页
    中国生物化学与分子生物学报. 2023, 39(3): 478-479.
  • 综述
    赵亚楠, 陈成
    中国生物化学与分子生物学报. 2023, 39(2): 165-173. https://doi.org/10.13865/j.cnki.cjbmb.2022.05.1121
    鞘脂(sphingolipids)是生物细胞中最主要的膜脂之一,同时也作为信号分子介导细胞生长、增殖、迁移及死亡等重要的生理反应,异常鞘脂代谢经常与心血管疾病、糖尿病、癌症、神经变性病以及自身免疫性疾病等相关。丝氨酸棕榈酰转移酶(serine palmitoyltransferase,SPT)及其复合物是鞘脂从头合成途径的起始酶和关键酶,催化L-丝氨酸与棕榈酰辅酶A缩合形成3-酮二氢鞘氨醇,之后再经过一系列反应生成神经酰胺和其它重要的鞘脂,在鞘脂代谢和稳态调节方面发挥重要作用。本文基于国内外对SPT的研究,综述了SPT的构型、活性位点、底物结合位点等关键的结构信息,尤其近2年的研究发现,SPT是一种组成极其复杂的酶,各个亚基之间存在错综复杂的相互作用和高度调控。SPT具有重要的生物学功能,包括参与胚胎发育、调节内环境稳态、诱导细胞凋亡和参与机体免疫调节等。SPT还可以通过调节酶活性影响鞘脂代谢,进而影响血管疾病和肿瘤的发生发展,并有潜力成为肿瘤诊断和治疗的关键分子。此外,SPT突变体与神经变性病密切相关,本文着重介绍了遗传性感觉与自主神经病变1型(hereditary sensory and autonomic neuropathy type 1,HSAN1)和早发性肌萎缩侧索硬化症(amyotrophic lateral sclerosis,ALS)的病变机制及最新的治疗手段,为深入了解该酶及其参与的鞘脂代谢提供理论参考,同时也为今后的功能研究和药物研发奠定基础。
  • 综述
    薛甜, 焦亚娟, 黄耀伟
    中国生物化学与分子生物学报. 2023, 39(10): 1375-1382. https://doi.org/10.13865/j.cnki.cjbmb.2023.02.1483
    以新冠病毒(SARS-CoV-2)为代表的冠状病毒(coronavirus,CoV)主要危害呼吸系统和消化道系统,严重危害人类与动物健康。冠状病毒非结构蛋白2(nonstructural protein 2, Nsp2)是病毒基因Orf1ab编码的多聚蛋白质在病毒木瓜样蛋白酶作用下,经切割后形成的成熟加工产物。Nsp2的研究较少,其在病毒复制相关的生命周期、与宿主相互作用等过程中发挥的主要作用至今未得到阐明。尽管Nsp2在不同CoVs中变异程度较大,但其演化分型与不同冠状病毒亚属的分型一致。最近对SARS-CoV-2 Nsp2的高级结构进行了解析和分析,同时也发现了SARS-CoV-2 Nsp2上存在一些与新冠突变株相关的显著突变,但是对Nsp2结构与突变及其生物学功能的联系仍不清楚。虽然Nsp2对于冠状病毒复制是非必须的,但是对于野生毒株达到最大病毒复制量至关重要。Nsp2被招募到被感染细胞的双层膜囊泡结构,与多种病毒蛋白质相互作用,协同参与病毒复制与转录。Nsp2还通过与多种宿主蛋白质相互作用,不仅参与线粒体、溶酶体、内质网等细胞器的生理过程,调节宿主细胞的能量代谢与物质转运,还通过影响干扰素的产生调节宿主先天免疫应答。本文对冠状病毒,特别是新冠病毒的Nsp2的产生、遗传演化、结构、主要变异位点进行了归纳,同时对其参与病毒复制、与病毒蛋白质及宿主蛋白质互作等最新研究进行概述总结,以期为冠状病毒的病原生物学、致病机制研究与防控提供参考。
  • 综述
    魏建磊, 张涛, 张鹏霞
    中国生物化学与分子生物学报. 2023, 39(10): 1383-1391. https://doi.org/10.13865/j.cnki.cjbmb.2023.02.1499
    肿瘤是机体在各种致瘤因素的作用下,局部细胞在基因水平上对其生长的调控失去控制,导致细胞异常增生而形成的新生物。根据肿瘤生物学特性及其对机体危害程度的不同,可将其分为良性和恶性肿瘤两大类。在中国,恶性肿瘤是导致患者死亡的主要原因之一,其发病率和死亡率不断攀升,成为非常严重的公共健康问题。肿瘤疫苗是一种利用肿瘤特异性抗原或肿瘤相关抗原激活机体特异性免疫应答,以杀伤肿瘤细胞的免疫干预策略,是肿瘤免疫治疗研究的热点之一。在过去的几十年里,随着基因技术的不断发展,肿瘤疫苗的研发取得了极大的进步。肿瘤疫苗在实体瘤的临床前研究及其相关试验中均显示出巨大的潜力,有望进一步提高患者的总生存期。根据作用目的,肿瘤疫苗可分为预防性肿瘤疫苗和治疗性肿瘤疫苗;根据作用机制,肿瘤疫苗又可分为细胞疫苗、蛋白质/合成肽疫苗、核酸疫苗等。目前,免疫检查点抑制剂、过继性细胞治疗和基于纳米材料的免疫疗法均在肿瘤治疗中显示出较好的疗效,肿瘤疫苗同其它免疫疗法的联合应用有可能成为肿瘤治疗领域的未来方向。然而,肿瘤疫苗的发展历经重重困难,但也积累了宝贵的临床研发经验。本文主要就不同类型治疗性肿瘤疫苗的起源、类型、作用机制及其优势与局限性展开论述,以期为今后肿瘤疫苗的研究工作提供帮助。
  • 综述
    张乐, 王振, 张钰哲
    中国生物化学与分子生物学报. 2023, 39(8): 1047-1058. https://doi.org/10.13865/j.cnki.cjbmb.2022.10.1344
    N6-腺苷甲基化(N6-adenosine methylation)是腺苷N6位点的甲基化形式,常出现在真核生物的mRNA中,是最常见的RNA内部修饰的方式之一。研究表明,m6A通过调节基因的表达来影响细胞的生物过程;同时m6A的调控因子也在各种癌症的发生、发展中发挥着关键作用。前列腺癌(prostate cancer,PCa)是一种常见的男性恶性肿瘤,超过60岁的男性的患病风险逐年攀升,并且随着人口老龄化的问题,可以预计PCa的患病数目会继续升高。近年来,关于m6A在肿瘤发生发展中的作用逐渐受到广泛关注,但是m6A甲基化修饰在PCa中的研究仍然有限,因此,进一步探讨二者之间的关系显得尤为重要。本文综述了近年来关于m6A甲基化修饰在PCa中的作用、机制及应用的研究进展,尤其详细综述了METTL3,FTO,YTHDF2三种经典的m6A相关调控蛋白质在PCa中的作用机制;并阐述了m6A在晚期PCa(例如:去势抵抗性前列腺癌,骨转移性前列腺癌)中的潜在应用。从甲基化修饰角度为PCa的早期诊断、治疗和预后挖掘一套有效治疗策略,为实现个体化治疗提供更多理论参考。
  • 综述
    刘克颜, 宁召臣
    中国生物化学与分子生物学报. 2022, 38(8): 1006-1014. https://doi.org/10.13865/j.cnki.cjbmb.2022.06.1056
    血小板是巨核细胞产生的无核细胞碎片,其主要功能是参与凝血和止血。近年来,越来越多的研究和临床证据表明,血小板还参与并促进了肿瘤转移。当肿瘤细胞从原位肿瘤组织脱落进入血管后,血小板是其第一个接触到的宿主细胞。作为肿瘤转移微环境中的重要成员,血小板与肿瘤细胞之间相互作用和相互影响。一方面,肿瘤细胞能通过诱导血小板活化和聚集来调节血小板功能;另一方面,血小板能够通过直接接触和释放生物活性介质的方式,促进肿瘤转移。大量的研究结果表明,血小板主要通过以下几条途径促进肿瘤转移:1)降低血液流体剪切力对肿瘤细胞造成的机械损伤;2)帮助肿瘤细胞逃避免疫监视;3)促进肿瘤细胞在血管内的迁移和停滞;4)促进肿瘤细胞上皮间质转化;5)促进肿瘤细胞外渗;6)构建适合肿瘤细胞生存的转移生态位。因此,靶向血小板与肿瘤细胞相互作用成为潜在的肿瘤治疗策略。本文以国内外最新研究进展为基础,综述血小板在肿瘤转移不同阶段发挥的作用,以及抗血小板药物在肿瘤治疗中的应用。
  • 综述
    王刘清, 窦非, 王友军
    中国生物化学与分子生物学报. 2022, 38(6): 689-698. https://doi.org/10.13865/j.cnki.cjbmb.2021.05.1055
    钙信号是细胞调节各项生命活动的重要机制。神经元通过胞外钙离子(calcium ion, Ca2+)内流、内质网Ca2+释放以及Ca2+释放介导的Ca2+内流等方式产生具有时空特异性的钙信号,用于调控多种生物学过程,例如动作电位的调节、神经递质的释放、轴突的生长以及突触可塑性等。神经元胞内Ca2+浓度因受到细胞精确调控而处于动态平衡之中。若钙信号失调导致平衡被打破,则会造成神经元功能异常甚至死亡。近年来多项研究表明,钙稳态失衡与神经退行性疾病,例如阿尔茨海默病等的产生和发展密切相关,由此发展出关于阿尔茨海默病的钙假说。该假说认为,神经元钙稳态调节机制的持续性改变是神经元功能失常、大脑产生慢性疾病的重要因素。阿尔茨海默病发生发展过程中,神经元胞浆钙水平异常增高,致使多种钙依赖性酶的活性异常,进而影响基因转录。虽然内质网钙稳态的变化目前仍存在一定的争议,但较为确定的是线粒体中存在着钙超载的现象,导致氧化磷酸化反应下调,活性氧的产量增加,进而引发细胞凋亡。本文主要介绍了神经元钙信号系统及其功能,简要梳理了阿尔茨海默病钙假说的相关研究,并对后续研究进行了展望。
  • 综述
    张桃桃, 张红, 狄翠霞
    中国生物化学与分子生物学报. 2022, 38(11): 1435-1442. https://doi.org/10.13865/j.cnki.cjbmb.2022.04.1563
    放射性药物指供临床诊断或治疗用的放射性核素制剂或其标记化合物。放射性核素靶向治疗是利用对肿瘤细胞具有特异高亲和力的分子载体将核素定向导入特定的肿瘤组织,对肿瘤进行治疗。与传统的放疗和化疗相比,其具有选择性杀伤肿瘤细胞的特点。随着核医学的发展,SPECT/CT、PET/CT的普及,新靶点的发现和新型放射性药物的研发,利用放射性药物进行靶向治疗在肿瘤临床治疗中占据的地位越来越重要。本文简述了放射性药物的分类、组成及特点;综述了针对肿瘤相关抗原的放射免疫药物在非霍奇金淋巴瘤、结直肠癌和前列腺癌中的应用;受体介导的放射性核素药物在治疗神经内分泌肿瘤、前列腺癌和乳腺癌中的临床应用以及基于基因修饰的放射性药物在肿瘤靶向治疗中的实验研究进展。最后总结了放射性药物在肿瘤靶向治疗中的应用前景与面临的挑战,以期为靶向治疗肿瘤的放射性药物的开发和临床应用提供一些参考。
  • 研究论文
    叶鑫, 张蕾, 成璐, 贾岩, 任杉, 刘冰, 宋露瑶, 王思懿, 李京敬
    中国生物化学与分子生物学报. 2022, 38(10): 1390-1402. https://doi.org/10.13865/j.cnki.cjbmb.2022.07.1146
    趋化因子及其受体信号通路是肿瘤细胞转移的主要调控因素之一,趋化因子受体CXCR4和XCR1都被证明参与了乳腺癌的进展。本文基于膜蛋白酵母双杂交发现了XCR1-CXCR4这一尚未报道过的相互作用对,进一步通过生物发光共振能量转移技术(bioluminescence resonance energy transfer, BRET)验证并发现XCR1可以竞争性地结合CXCR4受体 (P<0.01),形成异源二聚体。在功能方面,首先通过XCR1和CXCR4瞬时转染HEK293细胞进行划痕实验,加入30 nmol/L SDF-1β后,共转组41.55%的伤口愈合率低于单转CXCR4组的58.75%,说明XCR1的共表达抑制了基质细胞衍生因子-1β(SDF-1β)/ CXC趋化因子受体4型 (CXCR4)信号通路介导的细胞运动性(P<0.05);其次,利用CXCR4-EGFP转基因HEK293细胞系,共表达XCR1后,流式细胞术检测细胞表面CXCR4受体荧光。结果显示,在30 nmol/L SDF-1β的诱导下,XCR1能够加速异源二聚体中CXCR4的内化 (P<0.05),使得内化率从14.38%上升到64.10%;最后,分别检测了控制细胞增殖的Akt和控制细胞迁移的ERK信号通路的变化。结果发现,在SDF-1β刺激10 min后,单转CXCR4组的ERK磷酸化为3.59倍,而共转染XCR1/CXCR4组ERK的磷酸化水平仅为2.08倍,二聚化使得ERK磷酸化水平下降,且激活时间缩短;而Akt的磷酸化水平几乎不受影响。本研究揭示了CXCR4和XCR1二聚化现象,以及该二聚体对CXCR4介导的细胞运动性、受体内化和ERK磷酸化的影响。提示靶向XCR1的药物可以成为CXCR4交叉脱敏的候选药物,对于抑制乳腺癌转移提供了一个可供选择的思路。
  • 综述
    刘磊, 贾少晗, 于鹏
    中国生物化学与分子生物学报. 2023, 39(6): 769-777. https://doi.org/10.13865/j.cnki.cjbmb.2022.09.1282
    铁死亡是铁依赖性的脂质过氧化作用驱动的一种独特的细胞死亡方式。与细胞凋亡、自噬性程序性细胞死亡和细胞焦亡等细胞死亡方式不同,铁死亡的主要特征是线粒体形态的改变,包括线粒体膜变得致密并伴随体积变小,以及外膜破裂和线粒体嵴的减少或消失。线粒体作为细胞代谢的核心,是铁代谢、脂质代谢和能量代谢中的重要细胞器。但是,线粒体如何参与铁死亡并在其进程中发挥怎样的作用仍存在争议。本文综述了现有对铁死亡发生和防御机制的认识,并且对线粒体在铁死亡进程中的促进和抑制作用进行了描述和分析,包括线粒体三羧酸循环和糖酵解、线粒体活性氧、线粒体脂质代谢对铁死亡的积极驱动过程,以及通过线粒体铁蛋白、线粒体二氢乳酸脱氢酶等分子对线粒体脂质过氧化物解毒并抑制铁死亡的作用机制。最后补充说明了其他涉及铁死亡的线粒体分子调控机制。本文通过综述线粒体在铁死亡进程中的最新研究进展,旨在对深入了解铁死亡中线粒体的功能及其对铁死亡发生发展的作用机制,为细胞生物学基础研究及临床相关疾病的研究提供理论依据和参考。
  • 综述
    张仙宏, 张思雨, 李乐
    中国生物化学与分子生物学报. 2023, 39(2): 174-188. https://doi.org/10.13865/j.cnki.cjbmb.2022.06.1105
    肿瘤的发生发展不仅取决于基因的突变或缺失,还随着肿瘤细胞的代谢重塑或异常改变而发生改变。在营养缺乏的条件下,肿瘤细胞的代谢重编程赋予癌细胞快速增殖的能力。其中,氨基酸代谢重编程是肿瘤代谢异常改变的重要特征之一。研究发现,氨基酸不仅能够作为氮供体为肿瘤细胞的增殖、侵袭和免疫逃逸过程提供核苷酸等生物大分子的合成原料,而且还是肿瘤微环境中免疫细胞活化和发挥抗肿瘤作用的重要代谢物质。氨基酸代谢的异常改变与肿瘤的发生发展和肿瘤免疫密切相关,其代谢途径中的部分关键蛋白质或关键酶可作为肿瘤诊断和治疗的生物标志物。因此,本文围绕氨基酸转运体对癌细胞增殖的影响和肿瘤代谢循环过程中的谷氨酰胺、天冬酰胺、丝氨酸和甘氨酸等氨基酸代谢的异常改变进行总结,介绍了氨基酸代谢与肿瘤细胞mTOR信号通路、肿瘤微环境和免疫细胞功能的相关性,对靶向氨基酸代谢的肿瘤治疗药物进行了分析和展望。期望该工作为深入了解氨基酸代谢对肿瘤发生发展的调控及其可能存在的肿瘤治疗靶点提供有用的参考。
  • 研究论文
    张丽媛, 李家秋, 蔡锦威, 毕春华, 刘方花
    中国生物化学与分子生物学报. 2022, 38(7): 949-958. https://doi.org/10.13865/j.cnki.cjbmb.2022.05.1053
    长非编码RNA KCNQ1OT1在多种肿瘤中高表达,但是在胃癌中的研究较少并且研究结果不一致,其在胃癌中具体的作用机制也缺乏相关研究。通过癌症基因组图谱(The Cancer Genome Atlas, TCGA)公共数据库分析发现:KCNQ1OT1在胃癌中普遍高表达,且高表达KCNQ1OT1的胃癌病人预后不良,它与胃癌多种临床因素密切相关,尤其是与TP53的突变有明显的相关性,而且其表达与免疫细胞浸润明显相关;KCNQ1OT1在胃癌肿瘤细胞系中普遍高表达,敲低后可抑制胃癌肿瘤细胞的增殖能力,共表达网络分析发现,其表达与肿瘤代谢有密切的相关性;谷氨酰胺酶1(glutaminase 1, GLS1)在胃癌中普遍高表达,与预后不良密切相关,KCNQ1OT1与GLS1的表达具有明显的相关性,敲低KCNQ1OT1的表达可抑制GLS1 mRNA的表达,而过表达GLS1可以部分逆转敲低KCNQ1OT1造成的胃癌细胞增殖能力的下降,因此推测KCNQ1OT1可能通过GLS1调控胃癌肿瘤细胞的生长。本研究通过大数据及实验验证了KCNQ1OT1在胃癌中的表达及功能,提示KCNQ1OT1有可能通过调控谷氨酰胺代谢来促进了胃癌的发生发展,这为分子靶向治疗胃癌的临床研究提供了新的靶点和思路。
  • 综述
    童旭, 孙晓迪, 袁萍
    中国生物化学与分子生物学报. 2023, 39(10): 1392-1400. https://doi.org/10.13865/j.cnki.cjbmb.2022.12.1491
    支链氨基酸转移酶1(branched-chain amino acid transaminase 1,BCAT1)催化支链氨基酸(branched-chain amino acids,BCAA)和支链酮酸(branched-chain keto acids,BCKA)之间的转换反应,在维持二者稳态中发挥重要作用。近年来人们发现,BCAT1在多种恶性肿瘤中高表达,且与癌症的分期和预后关系密切,进一步研究证实,BCAT1能促进癌细胞的增殖、侵袭和转移,并揭示BCAT1在癌症发生发展中的部分作用机制:(1)不同肿瘤中BCAT1催化转氨基反应的方向不同,BCAT1既可催化BCAA分解为BCKA,也可催化BCKA合成BCAA,这两个方向都可能促进癌症的发生和发展;(2)BCAT1既能直接影响肿瘤细胞代谢来发挥相关作用,也能通过影响肿瘤微环境而产生促癌效应。总体而言,BCAT1通过催化BCAA的分解与合成反应,影响物质代谢、能量合成、信号通路、肿瘤免疫、表观遗传学和细胞周期等方面,进而促进癌症的发生与进展。本文就国内外BCAT1和BCAA的研究进展,聚焦BCAT1在肿瘤发生发展中的作用机制做一综述,为进一步探讨BCAT1在恶性肿瘤研究中的应用前景提供理论依据。
  • 综述
    郭浩然, 李佳, 臧奕
    中国生物化学与分子生物学报. 2023, 39(5): 683-691. https://doi.org/10.13865/j.cnki.cjbmb.2022.09.1218
    转录因子 (transcription factors, TFs) 参与细胞内DNA转录的起始与调控,直接或间接响应信号通路转导。其中,部分转录因子存在细胞核质定位的改变,在细胞质与细胞核中发挥不同的功能或活性。目前已发现,Smad,细胞外调节蛋白激酶 (extracellular regulated protein kinases, ERK), Yes相关蛋白 (yes-associated protein, YAP), β-联蛋白 (β-catenin), 信号传导与转录激活蛋白 (signal transducer and activator of transcription, STAT) 等转录因子存在细胞核质定位的改变。各转录因子通过不同的核定位信号肽(nuclear localization signal, NLS)受经典或非经典入核转运机制调控,进而影响其功能与活性。转录因子入核转运调控作为信号通路调控基因表达的重要方式之一,诸多转录因子入核转运机制仍不清楚。同时,部分转录因子被报道受不同的入核转运机制调控,各入核转运调控机制之间的关系尚不清楚。本文主要针对Smad, ERK, YAP, β-联蛋白, STAT五类转录因子NLS,入核转运机制研究及其对信号通路的影响进行综述,并对转录因子入核转运机制中存在的问题进行讨论,以期为后续其他转录因子入核转运机制研究提供参考。
  • 生物技术专栏
    巩琦凡, 郑晓飞, 付汉江
    中国生物化学与分子生物学报. 2023, 39(3): 332-340. https://doi.org/10.13865/j.cnki.cjbmb.2022.12.1436
    对基因组DNA进行自由编辑,一直是生物学家的梦想,随着CRISPR-Cas9这一强大基因编辑工具的发现及应用,这一梦想终于成真。起初,科学家发现Cas9、Cas12a及Cas12f等多种CRISPR-Cas系统可用于真核细胞DNA的编辑,随后,又陆续发现Cas13a、Cas13b及Cas13d等核酸酶靶向RNA分子。不仅如此,通过各种各样的改造,科学家还开发一系列新型CRISPR-Cas系统。这些人工改造的基因编辑系统比天然的CRISPR系统具有更高的DNA切割活性、更强的特异性以及更小的体积,它们形成了一个强大的工具集,可用于DNA序列的敲除、替换、表观遗传编辑甚至基因表达的激活和抑制。CRISPR基因编辑技术不仅是基因功能研究的强大工具,其在疾病治疗靶点的发现、病原体的核酸诊断与肿瘤等疾病的临床治疗方面也展现出巨大的潜力。当然,CRISPR技术在实际应用中仍然存在许多潜在的问题尚待解决,例如其在体内的高效递送,免疫原性和脱靶效应等。这些问题都将在本综述中展开讨论。相信随着CRISPR编辑技术的进一步改进,它将以更加完善和精确的方式在人类疾病的预防和治疗中发挥更大的作用。
  • 综述
    张华茜, 刘伟, 杜春梅
    中国生物化学与分子生物学报. 2023, 39(3): 400-412. https://doi.org/10.13865/j.cnki.cjbmb.2022.09.1187
    聚酮类化合物(polyketides,PKs)是一类来源广泛、数目庞大的天然产物。聚酮合酶(polyketide synthase,PKS)负责催化PKs的生物合成,是具有模块化结构的多功能复合酶,由一系列对称或非对称的二聚体模块组成。模块按照其功能的不同,可分为加载模块、延伸模块、卸载模块。各个模块中含有多个催化域,不同的催化域在聚酮链延伸过程中扮演着不同角色。模块以首尾相连的方式排列,通过非结构多肽接头或离散的对接结构域彼此连接,形成装配线来生产PKs。PKSs按照结构域和催化机制的不同,可以分为合成大环内酯类抗生素的I型PKSs(由迭代化PKSs和模块化PKSs组成)、合成芳香族聚酮类化合物的II型PKSs(也被叫做迭代类PKSs)和合成类黄酮化合物的III型PKSs。利用组合生物合成方法,如对不同聚酮物质或同一物质的不同结构域或模块进行交换,以及特异性地插入、替代、缺失关键基因,或者通过点突变等操作,可以形成重组PKSs,进而改变聚酮类化合物的结构。选择不同的起始和延伸单元,引入不同类型的PKSs后修饰酶以及对PKSs后修饰酶基因进行改造等方法,均可用于合成非天然PKs。本文概述了3大类型聚酮合酶的结构、催化机制和组合生物合成近期研究进展,为今后合理设计产量高、效价高、化学性质稳定的新型聚酮类化合物提供参考依据。
  • 综述
    陈晨, 秦付军, 唐悦
    中国生物化学与分子生物学报. 2022, 38(7): 839-848. https://doi.org/10.13865/j.cnki.cjbmb.2022.03.1344
    传统观念认为,嵌合RNA只是由染色体重排导致的基因融合,且融合基因及其产物(RNA和蛋白质)曾被认为是癌症的独有特征。然而,随着测序技术的进步和生物信息学软件工具的开发,通过对RNA-Seq数据库分析,越来越多的嵌合RNA被分离和鉴定出来。近年的研究表明,嵌合RNA并不是癌症所特有的现象,它广泛存在于人类多种正常组织和细胞中。除了染色体重排之外,嵌合RNA还有多种不同的分子形成机制,包括相邻基因的顺式剪接和反式剪接等。未发生染色体改变的嵌合RNA在转录水平上受到调控,从而呈现出独特的调控模式,其失调可能影响细胞分化并诱导肿瘤的发生。此外,嵌合RNA还发挥特定的生理功能,包括影响正常细胞生长和迁移能力,调控细胞周期及凋亡。通过影响染色体重排从而诱导基因组畸变,亦可作为潜在的竞争性内源RNA,以及影响干细胞的分化等。了解嵌合RNA在组织和细胞发育不同阶段的特异性表达,将有助于发掘潜在的临床诊疗生物标志物。深入且准确地对嵌合RNA的组织学图谱进行研究,可能实现从崭新的视角对特定细胞类型进行嵌合RNA治疗。越来越多的实验数据表明,嵌合RNA广泛存在于癌症和正常组织中,且具有重要的生理功能,其表达水平和模式也是高等动物拓展基因组功能的方式之一。
  • 特约综述
    虞子青, 张二荃
    中国生物化学与分子生物学报. 2023, 39(1): 1-15. https://doi.org/10.13865/j.cnki.cjbmb.2022.12.1541
    生物节律是生物为了适应地球自转产生的昼夜交替而进化出的生命活动调节机制。从植物的光合作用和叶片开合,到哺乳动物的睡眠、觉醒、进食、代谢、激素分泌和体温变化等,都受到生物节律的调节。一般认为,内源性的节律较为稳定,并且具有温度补偿效应。中枢节律由外界光照条件所同步化;外周组织的节律如何受中枢调控,也受到机体自身代谢反馈的影响。然而,在某些极端环境下,例如长期处于极昼极夜的两极地区、氧气含量低且气温变化无常的高原地区、干旱且气温变化范围极大的沙漠地区、常年不见阳光的深海和完全脱离地球自然环境和重力的太空,除了光照之外的其他环境因素也会对整个机体的节律产生影响;长期在这些极端环境下生存的生物也由于自然选择,进化出了相关基因的多态性以及独特的节律表型。本综述将讨论光照、低氧环境和温度影响生物节律的分子机制,并总结对于两极、高原、沙漠地区,以及深海、太空中动物的生物节律在个体和分子层面上的研究。这些研究或许可以帮助更好地理解生物体如何适应极端环境,为需要在极端环境下开展工作的人们如何调整作息状态提供一定的参考。
  • 综述
    毛元鹏, 魏红山
    中国生物化学与分子生物学报. 2023, 39(9): 1284-1290. https://doi.org/10.13865/j.cnki.cjbmb.2023.02.1416
    O-连接-N-乙酰氨基葡萄糖(O-linked-N-acetylglucosamine, O-GlcNAc)修饰是一种特殊的翻译后修饰,在众多细胞过程中发挥调节作用,例如转录、胞内信号转导、内吞作用和蛋白质稳定性。表皮生长因子(epidermal growth factor, EGF)结构域特异性O-GlcNAc转移酶(EGF domain-specific O-linked-N-acetylglucosamine transferase, EOGT)是一种内质网(endoplasmic reticulum, ER)驻留蛋白质,能够对含有EGF结构域的分泌或膜(跨膜)糖蛋白丝氨酸/苏氨酸残基进行糖基化修饰。Notch信号通路是一种普遍存在的细胞间通讯过程,通过邻近细胞间的相互作用调节细胞生物过程。目前,已经在多种人类疾病中发现有EOGT介导的O-GlcNAc修饰参与,并且通常与Notch信号通路相关。然而,其中具体分子机制尚未完全阐明。本文对近年来EOGT介导的O-GlcNAc修饰,以及相关Notch信号通路在多种人类疾病中的作用研究现状进行简要回顾。
  • 综述
    齐吉红, 张强
    中国生物化学与分子生物学报. 2023, 39(10): 1408-1414. https://doi.org/10.13865/j.cnki.cjbmb.2023.03.1488
    染色质是人类遗传信息的载体,位于染色质上的基因在不同的时空条件下的精准表达调控与DNA的可接触性和染色质相关复合物的密切关联。组蛋白是染色质的重要组成成份,组蛋白上的多种化学修饰,例如乙酰化、甲基化和磷酸化等构成组蛋白密码,实时调控染色质的开放程度及转录调节复合物与染色质的结合,导致基因转录的激活或抑制。随着高分辨率质谱和专一性化学修饰抗体制备技术的提高,一系列新型组蛋白赖氨酸酰基化修饰,例如巴豆酰化、乳酸酰化和琥珀酰化等被发现,进一步扩展了组蛋白密码的多样性,显著增加了组蛋白密码调控基因转录的复杂性。本文着重概述了新近发现的赖氨酸巴豆酰化、乳酸酰化、琥珀酰化、异丁酰化、甲基丙烯酰化和异烟酰化等新型组蛋白赖氨酸酰基化修饰的书写、阅读及擦除的动态调控分子机制,总结了这些组蛋白酰基化修饰在基因表达中的功能及调控机制,阐述了新型组蛋白酰基化修饰与人类疾病的关联,提出新型组蛋白酰基化修饰研究面临的挑战和未来研究的方向。
  • 综述
    蔡淑芳, 徐婧语, 吴艳青
    中国生物化学与分子生物学报. 2022, 38(5): 555-562. https://doi.org/10.13865/j.cnki.cjbmb.2021.07.1198
    糖尿病是一种常见的慢性代谢异常性疾病,可通过血糖异常诱导体内内环境紊乱,引起一系列急性或慢性并发症。慢性高血糖可引起大血管和微血管病变,该过程由错综复杂的分子机制协同调控,例如炎症反应、细胞内应激作用、细胞焦亡和细胞铁死亡等。糖尿病可抑制脊髓损伤后血脊屏障修复,加重神经功能损伤,从而不利于运动功能恢复。周细胞是神经血管单元的重要组成部分,参与调控血管再生、毛细血管血流量以及血脊屏障渗透性。脊髓损伤后,血脊屏障遭到破坏,周细胞覆盖率显著降低,血管正常功能受到巨大影响。糖尿病不仅参与调控周细胞的收缩表型和信号传导,而且改变周细胞分泌基因组谱,影响周细胞正常功能。此外,有研究证实,糖尿病促进脊髓损伤后周细胞丢失。本综述系统阐述了糖尿病对血管系统中周细胞的调控作用,及其介导的周细胞损伤对脊髓损伤后血脊屏障修复影响的研究进展。
  • 核糖核酸酶A专栏
    刘亚欣, 许正平
    中国生物化学与分子生物学报. 2023, 39(4): 478-485. https://doi.org/10.13865/j.cnki.cjbmb.2023.02.1475
    核糖核酸酶A超家族(ribonuclease A superfamily;RNase A superfamily),也称脊椎动物分泌型核糖核酸酶超家族(vertebrate secreted ribonucleases superfamily),是二十世纪蛋白质结构、酶学和分子进化领域研究最多最广泛的核糖核酸酶家族。自上世纪初期从牛胰腺中分离鉴定第一个成员以来,已从哺乳动物、两栖动物、爬行动物、鸟和鱼等几百种动物中鉴定了几千个成员。早期对该家族成员的研究不仅促进了蛋白质化学技术的发展,而且为现代生物学研究奠定了基础。目前已知人的核糖核酸酶A超家族成员包括8个典型成员(RNase 1 ~ RNase 8)和5个非典型成员(RNase 9 ~ RNase 13)。功能方面,曾一度以为该家族成员只具有降解核糖核酸的能力。随着血管生成素(angiogenin; RNase 5)、嗜酸性粒细胞衍生神经毒素(eosinophils-derived neurotoxin, EDN; RNase 2)、嗜酸性粒细胞阳离子蛋白(eosinophils cationic protein, ECP; RNase 3)的发现,人们意识到该家族成员除了消化核糖核酸外,还有依赖酶活性和不依赖酶活性的其他功能,包括宿主防御、免疫调节、血管生成和肿瘤抑制等,但仍了解不够全面。本文回顾了核糖核酸酶A超家族的研究历程,探讨了未来研究方向,特别呼吁要系统研究其除降解核糖核酸外的其他生理病理功能,希望能为该领域的研究提供思路。
  • 研究论文
    张鹏鹏
    中国生物化学与分子生物学报. 2023, 39(9): 1346-1355. https://doi.org/10.13865/j.cnki.cjbmb.2023.08.1143
    本研究旨在探讨运动对高脂喂养诱导的肥胖小鼠前额叶PGC-1α、鸢尾素(irisin)、BDNF、氧化应激、炎症及认知功能的影响,为改善肥胖群体认知障碍的运动康复与靶标筛选提供实验依据。3月龄清洁级雄性C57BL/6J野生型小鼠,随机分为对照组、高脂饮食组、高脂饮食+中等强度持续运动组、高脂饮食+中高强度间歇运动组,每组10只。高脂饮食+中等强度持续运动组和高脂饮食+中高强度间歇运动组小鼠在高脂喂养12周,接受8周中等强度持续运动或中高强度间歇运动。行为学结果显示,与对照组比较,高脂饮食组小鼠脱粘实验反应时长显著增加(P<0.01),Y迷宫试验自发交替百分比显著降低(P<0.01),新型物体识别探索时间百分比显著降低(P<0.01),结果表明,高脂饮食可导致小鼠认知功能障碍。Nissl染色和Western印迹结果显示,与对照组比较,高脂饮食组小鼠前额叶神经元尼氏体溶解和细胞凋亡增加(P<0.01),前额叶PGC-1α、Irisin、BDNF、IL-10和T-SOD水平显著降低(P<0.05,P<0.01),IL-1β、TNF-α、NF-κB、裂解胱天蛋白酶3(cleaved caspase-3)、Bax/Bcl-2、ROS和MDA水平显著升高(P<0.01),表明高脂饮食导致小鼠前额叶炎症、氧化应激和细胞凋亡,引发前额叶损伤。与高脂饮食组比较,高脂饮食+中等强度持续运动组和高脂饮食+中高强度间歇运动组,小鼠脱粘实验反应时长缩短(P<0.01),Y迷宫探索自发交替百分比显著增加(P<0.05,P<0.01),新型物体识别探索时间百分比显著增加(P<0.05,P<0.01),表明持续有氧和间歇运动均可显著改善肥胖小鼠认知功能;前额叶神经元尼氏体溶解和细胞凋亡减少(P<0.05,P<0.01),PGC-1α、Irisin、BDNF、IL-10和T-SOD水平显著升高(P<0.01),IL-1β、TNF-α、NF-κB、裂解胱天蛋白酶3、Bax/Bcl-2、ROS和MDA水平显著降低(P<0.01),表明持续有氧和间歇运动均可降低前额叶炎症、氧化应激和细胞凋亡,改善肥胖诱导的前额叶损伤。持续和间歇运动均显著上调肥胖小鼠前额叶PGC-1α/Irisin/BDNF表达,抑制炎症和氧化应激,减少细胞凋亡,缓解肥胖诱导的前额叶损伤和认知功能障碍,且间歇运动效果优于持续运动。
  • 特约综述
    沈梓芸, 高友鹤
    中国生物化学与分子生物学报. 2022, 38(12): 1571-1585. https://doi.org/10.13865/j.cnki.cjbmb.2022.10.1242
    生物标志物是与机体生理及病理生理状态相关的可监测到变化的生化指标,尿液不属于内环境,没有稳态机制,能够积累并反映机体生理状态的早期变化,有潜力辅助疾病的早期诊断和预后监测。得益于非侵入性的收集方式,尿液可以被连续、大量、重复收集并便捷、稳定地保存,且组分相对简单,易于分析,是理想的标志物研究样本。但临床尿液样本蛋白质组可能会受到生活习惯、用药情况等多种混杂因素的影响,而动物模型方便控制变量,可以最大程度减少混杂因素的干扰,并使得在疾病发生、发展极早期采集样本成为可能;此外,患者的疾病分期、分型、用药情况等信息不能被忽视,现有样本策略和分析方式有待优化,例如,对同一个人不同时期、不同状态(例如患病前后)的尿液样本进行前后对照是一种理想的分析方式,这种方式能够消除个体间差异性的影响,符合个性化、精准化医疗的趋势;在无自身对照样本的情况下,一对多的分析方法能够更好地体现个体与健康群体的差别,辅助未知疾病的诊断和鉴别。尿液大分子的膜保存方式使得临床样本的保存更加简单经济。尿液生物标志物领域研究的进步需要政策和伦理的支持、资金和人力长期持续的投入以及大样本、大数据的辅助。本文综述了尿液生物标志物的重要概念、理论思想、发展历程、研究现状、主要方法和技术以及未来展望等内容,期望能较为全面地展示尿液蛋白质组在生物标志物领域广阔的应用前景。
  • 昌增益
    中国生物化学与分子生物学报. 2023, 39(8): 1212-1228. https://doi.org/10.13865/j.cnki.cjbmb.2023.08.1000
  • 教育与教学
    董彬, 宿志伟, 王君, 吴涛, 王玉娜, 孙春龙, 赵丽萍, 李旺, 付石军
    中国生物化学与分子生物学报. 2023, 39(9): 1365-1374. https://doi.org/10.13865/j.cnki.cjbmb.2023.04.1608
    本文是滨州学院《生物技术制药》课程组,基于“立德树人、培根铸魂”的育人导向,通过重新定位课程目标,结合科技发展前沿、社会热点、民族精神、创新精神、奉献精神等要素对课程中的思政元素进行深入挖掘,并与课程中的生物化学和分子生物学知识内容例如基因工程、细胞工程、发酵工程、酶工程及蛋白质工程等专业内容有机融合,建立线上线下思政资源库,并通过“雨课堂”等教辅工具,采用讲授法、案例法、小组汇报、混合式教学等模式开展课程教学,将课程思政纳入课程考核体系,对《生物技术制药》本科课程思政教学进行了改革与实践,并以“基因工程与制药产业概述”为例对课程思政的教学实施过程进行阐述,并对近年来的课程改革效果进行总结归纳,旨在为培养具有爱国主义情怀和社会责任感的高素质生物医药人才建立一套系统全面,可推广复制和持续改进的课程思政改革与实践方案,为同类相关课程的教学改革提供借鉴。
  • 生物技术专栏
    董继林, 李衍常, 徐平
    中国生物化学与分子生物学报. 2023, 39(3): 320-331. https://doi.org/10.13865/j.cnki.cjbmb.2022.10.1306
    泛素化修饰作为真核细胞内主要的蛋白质翻译后修饰之一,通过泛素-蛋白酶体系统(UPS)介导了细胞内的蛋白质特异性降解,同时广泛参与并调控细胞内基因转录、信号传导、DNA损伤与修复、细胞周期调控、应激反应甚至个体的免疫应答等几乎所有的生命活动过程。泛素-蛋白酶体系统的精确调控构成了稳定而复杂的泛素化信号网络,而其失调通常会造成癌症、神经退行性疾病、代谢性疾病等多种疾病的发生发展。近年来,基于质谱(MS)的蛋白质组学逐渐成熟,并极大促进了泛素化修饰研究的深度与广度。依托于泛素化蛋白质/肽段富集技术的发展以及高通量、高覆盖度和高灵敏度的质谱检测技术平台,蛋白质泛素化修饰组学也得以快速发展,并逐渐应用于人类生理、病理状态的泛素化蛋白质组研究和疾病发生发展的机制探索。本文主要综述了泛素化修饰组学研究中的泛素化蛋白质/肽段富集方法、质谱鉴定技术、定量标记技术和数据处理方法,同时对泛素化修饰组学技术在疾病研究中的应用也进行了系统分析,理清了当前存在的问题与挑战,为泛素化修饰蛋白质的发现与鉴定提供参考,为相关疾病治疗靶点的筛选和药物研发提供思路。
  • 综述
    付育, 何天柳, 李霓
    中国生物化学与分子生物学报. 2022, 38(12): 1612-1620. https://doi.org/10.13865/j.cnki.cjbmb.2022.04.1653
    RNA结合蛋白(RNA-binding proteins,RBPs)是转录后基因表达的关键调控因子,参与剪接、出核、翻译和稳定性等RNA代谢调控。RBPs表达或功能异常可导致炎症性疾病、代谢性疾病以及神经系统疾病等多种疾病的发生发展。炎症是机体对外界刺激及损伤的防御性免疫反应。巨噬细胞作为机体重要的免疫细胞,通过快速响应刺激并且释放大量炎症因子,进而调控炎症反应。巨噬细胞中炎症因子的表达受到转录以及转录后水平的调控。其中,RBPs参与大量RNA的转录后调控过程。研究发现,一方面,RBPs直接结合炎症因子mRNA中的顺式作用元件,参与其mRNA稳定性和翻译等过程,例如TTP(tristetraprolin);另一方面,某些RBPs通过参与炎症信号通路中一些关键基因mRNA的稳定性、翻译或选择性剪接调控,进而间接影响炎症因子表达及分泌。例如,剪接因子3A亚基1(splicing factor 3A subunit 1, SF3A1)。本文主要总结RBPs在mRNA稳定性、翻译和选择性剪接不同转录后水平调控巨噬细胞炎症因子表达的作用机制。这些RBPs从不同的层面直接或者间接参与调控炎症因子的表达,有些相互协同,有些相互拮抗,是宏观的、整体的对机体炎症反应的调控。深入探讨RBPs调控巨噬细胞炎症因子以及炎症反应的作用机制,对于从不同角度认识、预防以及治疗炎症性相关疾病,具有重要意义。
  • 综述
    赵祎, 王萌, 杨洋
    中国生物化学与分子生物学报. 2022, 38(7): 849-857. https://doi.org/10.13865/j.cnki.cjbmb.2022.01.1447
    甲硫氨酸(methionine)作为人体必需氨基酸,生理功能多样,在肿瘤代谢重编程过程中具有重要意义。研究发现,多种肿瘤细胞对外源性甲硫氨酸存在依赖性,该效应被称为Hoffman效应。在人体内,甲硫氨酸经甲硫氨酸循环代谢,参与一碳单位代谢、叶酸循环,以及多胺、谷胱甘肽、半胱氨酸和核苷酸等多种物质的合成。肿瘤中常出现甲硫氨酸代谢的改变,并伴随甲硫氨酸代谢相关酶基因表达的异常,其中以甲硫氨酸腺苷转移酶(methionine adenosyltransferase, MAT)相关基因表达改变及甲硫腺苷磷酸化酶(methylthioadenosine phosphorylase,MTAP)基因的缺失最为常见,二者可分别引起甲硫氨酸循环及甲硫氨酸补救合成途径的异常,进而导致甲基供体S-腺苷甲硫氨酸(S-adenosylmethionine, SAM)的生成减少和甲硫腺苷(methylthioadenosine, MTA)的堆积,其与肿瘤的发生、发展和转移等活动密切相关。由甲硫氨酸的代谢改变和代谢酶的基因表达异常,分别衍生出2种不同的治疗策略,即甲硫氨酸限制疗法和靶向治疗。本文将从甲硫氨酸代谢出发,阐述肿瘤中甲硫氨酸依懒性、肿瘤细胞MAT和MTAP相关基因的表达调控,并概述甲硫氨酸相关肿瘤治疗方案的新进展与新问题,为肿瘤治疗方案的进一步探索提供新思路。
  • 综述
    刘雨, 周筱, 王嘉东
    中国生物化学与分子生物学报. 2022, 38(7): 829-838. https://doi.org/10.13865/j.cnki.cjbmb.2021.11.1421
    聚腺苷二磷酸-核糖聚合酶1(poly ADP-ribose polymerase-1,PARP1)是细胞中重要的修饰酶,其最广为人知的作用是通过自身PAR修饰,募集以XRCC1为首的多种DNA损伤修复效应蛋白质,参与DNA单、双链损伤修复。PARP1还能通过促进复制叉停滞与核小体解聚,为DNA损伤修复提供有利条件,维持基因组稳定性。近年来,除DNA损伤修复方面的作用,还发现PARP1能影响细胞凋亡、自噬与炎症通路,与神经退行性疾病的发生发展密切相关。而PARP抑制剂(PARP inhibitor,PARPi)是一种靶向PARP1,与细胞同源重组(homologous recombination,HR)缺陷表型共同作用,产生合成致死效应的抗肿瘤药物。该药物可捕获PARP1并抑制其活性,一方面直接干扰PARP1参与的DNA损伤修复通路,另一方面也抑制了PARP1介导的DNA损伤修复通路选择和复制叉停滞,使细胞基因组不稳定。然而,在临床治疗中常发现肿瘤细胞对PARPi不敏感。肿瘤细胞对PARPi耐药与自身基因突变高度相关,这些基因分别作用于细胞HR修复途径、PARP1循环途径、复制叉稳定性和药物主动外排等方面,在耐药肿瘤患者中确定具体的突变位点,将为临床治疗提供帮助。本文旨在对PARP1的功能作一综述,并重点介绍PARPi的作用机制和与肿瘤耐药相关的突变基因及其耐药机制,以期加深对细胞中PARP1介导的DNA损伤修复通路的认识,并为将来的临床治疗提供新思路。
  • 综述
    宗博艺, 李琳, 李世昌
    中国生物化学与分子生物学报. 2022, 38(11): 1443-1450. https://doi.org/10.13865/j.cnki.cjbmb.2022.04.1599
    骨钙素(OCN)能调节多种外周组织器官的生理结构与功能,也发挥重要的中枢调控作用,与个体的学习和记忆等高级认知功能密切相关。研究表明,OCN穿过血脑屏障进入大脑,并与神经元或神经胶质细胞膜上的G蛋白偶联受体(GPCR)家族成员GPR158和GPR37结合,激活或抑制细胞内相关信号通路,改变神经元或神经胶质细胞的生理活性。OCN在脑内的作用主要包括调节5-羟色胺、多巴胺、去甲肾上腺素和γ-氨基丁酸等神经递质合成与释放、增加脑源性神经营养因子表达、促进海马神经发生、增强海马神经元自噬及维持髓鞘稳态等。此外,OCN还能参与调控多种神经退行性疾病的病理生理学进程。在阿尔茨海默病(AD)中,OCN干预能够部分减少β-淀粉样蛋白(Aβ)沉积及Aβ诱发的细胞毒性等,改善学习和记忆能力缺陷;在帕金森氏病(PD)中,OCN干预能够部分抑制黑质和纹状体多巴胺能神经元丢失,增加酪氨酸羟化酶含量及降低神经炎症等,缓解运动功能障碍。本文通过解析GPR158和GPR37的结构与功能,分析OCN在脑内的作用及其生物学机制,探讨OCN对AD和PD等神经退行性疾病的影响,为进一步筛选促进脑健康的新型靶点提供依据。
  • 综述
    王奕婷, 姜雪薇, 白晓彦
    中国生物化学与分子生物学报. 2022, 38(11): 1451-1457. https://doi.org/10.13865/j.cnki.cjbmb.2022.03.1584
    c-Myc是一种转录因子,参与Myc/Max/Mxd信号调控网络。c-Myc不仅调节机体的正常发育,在肿瘤的发生发展过程中也发挥着十分重要的作用。目前的研究显示,超过70%肿瘤中存在c-Myc突变或表达量的变化。因此,c-Myc靶向抑制剂可能成为肿瘤治疗的新策略。目前,临床上尚无针对c-Myc的治疗方法,但是随着靶向c-Myc临床应用研究的不断深入,以Omomyc为代表的抑制剂研究取得了较大的进展,并且c-Myc在肿瘤中的直接抑制可能发展为可行的临床治疗手段。虽然靶向c-Myc在癌症治疗中具有广阔的前景,但c-Myc的直接抑制目前仍存在诸多的风险与挑战。本综述中,首先,对c-Myc在细胞中的调节网络及其生物学功能进行简要的总结;其次,讨论靶向c-Myc及其同系物在肿瘤治疗中的潜在意义;另外,总结c-Myc作为一个潜在的临床治疗靶点应用于临床所面临的诸多挑战。最后,对目前已经发现的一些c-Myc抑制剂,例如小分子抑制剂以及蛋白质和肽类抑制剂的优缺点进行对比与探讨,并就其所存在的问题作出展望,从而为癌症中以c-Myc为靶点的临床治疗提供理论依据。
  • 教育与教学
    初志战, 巫光宏, 王声斌, 吴骏, 朱国辉, 郭海滨
    中国生物化学与分子生物学报. 2022, 38(11): 1564-1570. https://doi.org/10.13865/j.cnki.cjbmb.2022.09.1213
    生物化学不仅是生物类专业的基础课,也是发展最快的前沿课程之一。传统的线下教学模式面对生物化学的繁杂体系暴露出许多问题,通常教学效果不佳。随着互联网技术的发展,“互联网+”教育得到快速发展。慕课与微课等线上课程为许多高校提供了丰富的学习资源,钉钉课堂、腾迅课堂、雨课堂、微信交流平台等线上课程直播,也让学生足不出户就能实现同步学习。线上教学在新冠疫情期间成为全国大中小学院校的主要教学模式,但经过几年的推广,单纯的线上教学在教学效果方面也暴露出诸多问题。为充分发挥线上、线下教学的各自优势,混合式教学成为发展方向。华南农业大学在2019年初开始与智慧树平台合作,建立生物化学的教学慕课,在2020年新冠疫情期间,我校生物化学课程教学采用了“MOOC+线上见面课”的线上混合教学模式。教学反馈结果显示,学生单纯依靠MOOC并不能很好地完成生物化学的学习,但“MOOC+线上见面课”则获得了学生的普遍认可。该教学模式不仅能提高学生的学习兴趣和学习主动性,在一定程度上也能提升教学质量和学习效果,为今后 “MOOC+线下课”的应用提供了参考。
  • 综述
    杨忠彬, 刘治, 苏燕
    中国生物化学与分子生物学报. 2023, 39(9): 1266-1274. https://doi.org/10.13865/j.cnki.cjbmb.2023.03.1449
    葡萄糖转运蛋白家族(glucose transporters,GLUTs)属于主要协助转运蛋白超家族(major facilitator superfamily, MFS),由溶质运载蛋白家族(solute carrier family 2,SLC2)基因编码,主要协助葡萄糖进行跨细胞膜转运。GLUT1是发现最早的GLUTs家族成员,主要存在于血脑屏障及红细胞膜上,对于维持血糖浓度稳定和大脑供能发挥重要作用。GLUT1的跨膜转运能力一方面与膜上SLC2 A1基因表达量有关,另一方面与GLUT1的转运动力学调控有关。SLC2 A1基因表达调控主要涉及转录、转录后、翻译和翻译后水平调控。转运动力学调控主要包括一系列GLUT1抑制剂,例如膜内糖结合位点抑制剂、膜外糖结合位点抑制剂、腺苷结合效应类抑制剂以及高选择性抑制剂BAY-876。SLC2 A1基因缺失和突变会导致胚胎致死和GLUT1缺乏症;而SLC2 A1表达异常增高则与多种糖尿病合并症(例如糖尿病视网膜病变、糖尿病肾病)、神经认知性障碍及肿瘤等发生相关。本文围绕GLUT1结构功能、表达和活性调控及其与疾病的关系进行综述,以期为GLUT1相关的临床研究和药物研发提供参考。